已知拋物線y2=2px(p>0),過其焦點且斜率為1的直線交拋物線于A、B兩點,若線段AB的中點的縱坐標(biāo)為2,則該拋物線的準(zhǔn)線方程為________.
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線E的中心為原點,F(3,0)是E的焦點,過F的直線l與E相交于A、B兩點,且AB的中點為N(-12,-15),則E的方程為( )
A.-=1 B.-=1
C.-=1 D.-=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在直角坐標(biāo)系xOy中,點M(2,-),點F在拋物線C:y=mx2(m>0)的焦點,線段MF恰被拋物線C平分.
(1)求m的值;
(2)過點M作直線l交拋物線C于A、B兩點,設(shè)直線FA、FM、FB的斜率分別為k1、k2、k3,問k1、k2、k3能否成公差不為零的等差數(shù)列?若能,求直線l的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)拋物線x2=12y的焦點為F,經(jīng)過點P(2,1)的直線l與拋物線相交于A,B兩點,又知點P恰為AB的中點,則|AF|+|BF|=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點,Q為圓周上任一點,線段AQ的垂直平分線與CQ的連線交于點M,則M的軌跡方程為( )
A.-=1 B.+=1
C.-=1 D.+=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點F(1,0),⊙F與直線4x+3y+1=0相切,動圓M與⊙F及y軸都相切.
(1)求點M的軌跡C的方程;
(2)過點F任作直線l,交曲線C于A,B兩點,由點A,B分別向⊙F各引一條切線,切點分別為P,Q,記α=∠PAF,β=∠QBF,求證sinα+sinβ是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
正四棱錐S-ABCD中,O為頂點在底面上的射影,P為側(cè)棱SD的中點,且SO=OD,則直線BC與平面PAC所成的角的大小為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com