【題目】如圖,四棱錐中,底面,,,,,,為棱的中點.

(1)求證:平面

(2)求點到平面的距離,

【答案】(1)見證明;(2)

【解析】

(1)取的中點,則,通過勾股證得即得結(jié)合即可得證.

(2)先求再求根據(jù)體積公式計算即可.

解:(1)取的中點,連結(jié),.如圖:

因為底面所以,

又因為,

所以平面,得.

又因為所以,

SAD,

SAB,的中點,故

,所以,

中,,故,在中,,故,在中, ,由余弦定理知

中,,,滿足勾股定理所以,從而.

所以平面.

(2)連接BD并取中點O,連接EO,OC,過OCDM點,過OADN點,如圖:

中,,,

底面為棱的中點

底面為直角三角形即

,,由余弦定理知

.

,且,

,解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的最大值為.

1)求的值;

2)試推斷方程是否有實數(shù)解?若有實數(shù)解,請求出它的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每條小線段重復(fù)上述步驟,得到16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”,…,如此進行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度達到初始線段的1000倍,則至少需要通過構(gòu)造的次數(shù)是( .(取

A.16B.17C.24D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐,,在底面上的投影上.

1)證明

2為棱上一點,若與面所成的角和與面所成的角相等,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著城市地鐵建設(shè)的持續(xù)推進,市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計,某條地鐵線路運行時,發(fā)車時間間隔t(單位:分鐘)滿足:4≤t≤15N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.

(1)若平均每趟地鐵的載客人數(shù)不超過1500人,試求發(fā)車時間間隔t的值.

(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當發(fā)車時間間隔t為多少時,平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機構(gòu)數(shù)(個)與對應(yīng)年份編號的散點圖(為便于計算,將 2013 年編號為 1,2014 年編號為 2,…,2018年編號為 6,把每年的公共圖書館業(yè)機構(gòu)個數(shù)作為因變量,把年份編號從 1 到 6 作為自變量進行回歸分析),得到回歸直線,其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個數(shù)是( )

①公共圖書館業(yè)機構(gòu)數(shù)與年份的正相關(guān)性較強

②公共圖書館業(yè)機構(gòu)數(shù)平均每年增加13.743個

③可預(yù)測 2019 年公共圖書館業(yè)機構(gòu)數(shù)約為3192個

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形,,平面平面,三角形為等邊三角形,

(Ⅰ)求證:平面平面;

(Ⅱ)若平面

①求異面直線所成角的余弦值;

②求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中, , 分別為 的中點,的中點,,.沿折起到的位置,使得平面平面,如圖2.

1)求證:;

2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線:,為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線.

(1)說明是哪一種曲線,并將的方程化為極坐標方程;

(2)若直線的方程為,設(shè)的交點為,,的交點為,,若的面積為,求的值.

查看答案和解析>>

同步練習(xí)冊答案