對于R上可導(dǎo)的任意函數(shù)f(x),若滿足x•f′(x)≥0,則必有( )
A.f(-1)+f(1)<2f(0)
B.f(-1)+f(1)>2f(0)
C.f(-1)+f(1)≤2f(0)
D.f(-1)+f(1)≥2f(0)
【答案】分析:分x≥1和x<1兩種情況對xf′(x)≥0進(jìn)行討論,由極值的定義可得當(dāng)x=0時(shí)f(x)取得最小值,故問題得證.
解答:解:依題意,當(dāng)x≥0時(shí),f′(x)≥0,函數(shù)f(x)在(0,+∞)上是增函數(shù);
當(dāng)x<0時(shí),f′(x)≤0,f(x)在(-∞,0)上是減函數(shù),
故當(dāng)x=0時(shí)f(x)取得最小值,即有
f(-1)≥f(0),f(1)≥f(0),
∴f(-1)+f(1)≥2f(0).
故選D.
點(diǎn)評(píng):本小題主要考查函數(shù)單調(diào)性的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查分類討論的思想思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-1)f′(x)≥0,則必有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

9、對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-a)f′(x)≥0,則必有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于R上可導(dǎo)的任意函數(shù)f(x),若滿足
1-x
f′(x)
≤0,則必有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列4個(gè)命題:
①函數(shù)y=f(x)在一點(diǎn)的導(dǎo)數(shù)值為0是函數(shù)y=f(x)在這點(diǎn)取極值的充要條件;
②若橢圓x2+my2=1的離心率為
3
2
,則它的長半軸長為1;
③對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-1)f′(x)≥0,則必有f(0)+f(2)≥2f(1);
④經(jīng)過點(diǎn)(1,1)的直線,必與
x2
4
+
y2
2
=1有2個(gè)不同的交點(diǎn).
其中真命題的為
③④
③④
將你認(rèn)為是真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-2)f′(x)≤0,則必有( 。
A、f(-3)+f(3)<2f(2)B、f(-3)+f(7)>2f(2)C、f(-3)+f(3)≤2f(2)D、f(-3)+f(7)≥2f(2)

查看答案和解析>>

同步練習(xí)冊答案