對于R上可導(dǎo)的任意函數(shù)f(x),若滿足x•f′(x)≥0,則必有( )
A.f(-1)+f(1)<2f(0)
B.f(-1)+f(1)>2f(0)
C.f(-1)+f(1)≤2f(0)
D.f(-1)+f(1)≥2f(0)
【答案】分析:分x≥1和x<1兩種情況對xf′(x)≥0進(jìn)行討論,由極值的定義可得當(dāng)x=0時(shí)f(x)取得最小值,故問題得證.
解答:解:依題意,當(dāng)x≥0時(shí),f′(x)≥0,函數(shù)f(x)在(0,+∞)上是增函數(shù);
當(dāng)x<0時(shí),f′(x)≤0,f(x)在(-∞,0)上是減函數(shù),
故當(dāng)x=0時(shí)f(x)取得最小值,即有
f(-1)≥f(0),f(1)≥f(0),
∴f(-1)+f(1)≥2f(0).
故選D.
點(diǎn)評(píng):本小題主要考查函數(shù)單調(diào)性的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查分類討論的思想思想.屬于基礎(chǔ)題.