A. | 12 | B. | 8 | C. | 6 | D. | 4 |
分析 由$\overrightarrow{a}⊥\overrightarrow$便可得出a3•a13=16,而根據(jù)條件{an}為等比數(shù)列且各項均為正數(shù),從而可以得出${{a}_{8}}^{2}=16$,從而得到a8=4,這樣便得出m=8.
解答 解:∵$\overrightarrow{a}⊥\overrightarrow$;
∴$\overrightarrow{a}•\overrightarrow=0$;
即2•(-8)+a3•a13=0;
∴a3•a13=16;
∵{an}為等比數(shù)列,且各項均為正數(shù);
∴${a}_{3}•{a}_{13}={{a}_{8}}^{2}$;
∴${{a}_{8}}^{2}=16$;
∴a8=4;
∴m=8.
故選:B.
點評 考查向量垂直的充要條件,向量數(shù)量積的坐標運算,以及等比數(shù)列的通項公式及性質.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{11}{36}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1 | B. | $\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{32}$=1 | C. | $\frac{{x}^{2}}{3}$-y2=1 | D. | x2-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | k<7? | B. | k≥7? | C. | k≤8? | D. | k>8? |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com