分析 由于函數(shù)y=a2-x+1(a>0,a≠1)圖象恒過定點(diǎn)A(2,2),又點(diǎn)A在直線mx+ny=1上(mn>0),可得2m+2n=1.再利用“乘1法”和基本不等式的性質(zhì)即可得出.
解答 解:x=2時(shí)y=2,所以定點(diǎn)A(2,2)( 3分)
A在直線上,所以2m+2n=1,且mn>0,(6分)
所以$\frac{1}{m}+\frac{1}{n}$=$(\frac{1}{m}+\frac{1}{n})(2m+2n)=2+2+\frac{2m}{n}+\frac{2n}{m}≥4+2\sqrt{4}=8$,
即$\frac{1}{m}+\frac{1}{n}$的最小值為8 (10分)
點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的性質(zhì)、“乘1法”和基本不等式的性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-2)∪(1,+∞) | B. | (-2,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1) | C. | (-2,1) | D. | (-1,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com