【題目】已知橢圓的離心率為,過點(diǎn)的橢圓的兩條切線相互垂直.

(Ⅰ)求橢圓的方程;

(Ⅱ)在橢圓上是否存在這樣的點(diǎn),過點(diǎn)引拋物線的兩條切線,切點(diǎn)分別為,且直線過點(diǎn)?若存在,指出這樣的點(diǎn)有幾個(不必求出點(diǎn)的坐標(biāo));若不存在,請說明理由.

【答案】(Ⅰ);(Ⅱ)滿足條件的點(diǎn)有兩個.

【解析】

試題

(1) 結(jié)合橢圓的離心率可求得,則橢圓方程為.

(2)由題意首先求得切線方程的參數(shù)形式,據(jù)此可得直線的方程為,則點(diǎn)的軌跡方程為原問題轉(zhuǎn)化為直線與橢圓的交點(diǎn)個數(shù),即滿足條件的點(diǎn)有兩個.

試題解析:

Ⅰ)由橢圓的對稱性,不妨設(shè)在軸上方的切點(diǎn)為,軸下方的切點(diǎn)為

,的直線方程為

因?yàn)闄E圓 的離心率為,

所以橢圓

所以 ,則

所以橢圓方程為.

Ⅱ)設(shè)點(diǎn),,

,即,得,

∴拋物線在點(diǎn)處的切線的方程為,

,.

∵點(diǎn)在切線上,∴.

同理,.

綜合①、②得,點(diǎn),的坐標(biāo)都滿足方程.

∵經(jīng)過,兩點(diǎn)的直線是唯一的,

∴直線的方程為,

∵點(diǎn)在直線上,∴,

∴點(diǎn)的軌跡方程為.

又∵點(diǎn)在橢圓上,又在直線上,

∴直線經(jīng)過橢圓內(nèi)一點(diǎn),

∴直線與橢圓交于兩點(diǎn).

∴滿足條件的點(diǎn)有兩個.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國一帶一路戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住一帶一路帶來的機(jī)遇, 決定開發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為萬元, 每生產(chǎn)臺,需另投入成本(萬元), 當(dāng)年產(chǎn)量不足臺時, (萬元); 當(dāng)年產(chǎn)量不小于臺時 (萬元), 若每臺設(shè)備售價為萬元, 通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)能全部.

(1)求年利潤 (萬元)關(guān)年產(chǎn)(臺)的函數(shù)關(guān)系式;

(2)年產(chǎn)為多少臺時 ,該企業(yè)在這一電子設(shè)的生產(chǎn)中所獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,分別為橢圓的左,右焦點(diǎn),橢圓上點(diǎn)的橫坐標(biāo)等于右焦點(diǎn)的橫坐標(biāo),其縱坐標(biāo)等于短半軸長的,則橢圓的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,討論的導(dǎo)函數(shù)的單調(diào)性;

(2)當(dāng)時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,且曲線處有相同的切線.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)求證:上恒成立;

(Ⅲ)當(dāng)時,求方程在區(qū)間內(nèi)實(shí)根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知矩形中,,的中點(diǎn).沿折起,使得平面平面(如圖②),并在圖②中回答如下問題:

(1)求證:;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是⊙的直徑,是⊙的切線,交⊙E,過E的切線與交于D.

(I)求證:;

(II)若,,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C的短軸長為2,傾斜角為的直線l與橢圓C相交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,且點(diǎn)M與坐標(biāo)原點(diǎn)O連線的斜率為.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若P是以AB為直徑的圓上的任意一點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)是曲線上的動點(diǎn),求點(diǎn)到曲線的最小距離.

查看答案和解析>>

同步練習(xí)冊答案