13.已知離心率為e的雙曲線和離心率為$\frac{{\sqrt{2}}}{2}$的橢圓有相同的焦點(diǎn)F1,F(xiàn)2,P是兩曲線的一個公共點(diǎn),若∠F1PF2=$\frac{π}{3}$,則e等于( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{5}{2}$C.$\frac{\sqrt{6}}{2}$D.3

分析 利用橢圓、雙曲線的定義,求出|PF1|,|PF2|,結(jié)合∠F1PF2=$\frac{π}{3}$,利用余弦定理和離心率公式,建立方程,即可求出e.

解答 解:設(shè)橢圓的長半軸長為a1,雙曲線的實(shí)半軸長為a2
焦距為2c,|PF1|=m,|PF2|=n,且不妨設(shè)m>n,
由m+n=2a1,m-n=2a2得m=a1+a2,n=a1-a2
又∠F1PF2=$\frac{π}{3}$,
∴4c2=m2+n2-mn=a12+3a22
∴$\frac{{{a}_{1}}^{2}}{{c}^{2}}$+$\frac{3{{a}_{2}}^{2}}{{c}^{2}}$=4,
由橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,雙曲線的離心率為e,
則$\frac{1}{(\frac{\sqrt{2}}{2})^{2}}$+$\frac{3}{{e}^{2}}$=4,
解得e=$\frac{\sqrt{6}}{2}$,
故選:C.

點(diǎn)評 本題考查橢圓、雙曲線的定義與性質(zhì),主要考查離心率的求法,同時考查余弦定理,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2}$,π),求sin2α以及cos$\frac{α}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若α∈($\frac{π}{2}$,π),則$\frac{sin2α}{si{n}^{2}α+4co{s}^{2}α}$的最小值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}前幾項(xiàng)和Sn,Sn-Sn-2=3(-$\frac{1}{2}$)n-1(n≥3),且S1=1,S2=-$\frac{3}{2}$,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}的首項(xiàng)a1=1,且滿足an-1-an=anan-1(n≥2),則a1a2+a2a3+…+a2014a2015=$\frac{2014}{2015}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.平面直角坐標(biāo)系中,已知曲線C1:x2+y2=1,將曲線C1上所有點(diǎn)橫坐標(biāo),縱坐標(biāo)分別伸長為原來的$\sqrt{2}$倍和$\sqrt{3}$倍后,得到曲線C2
(1)試寫出曲線C2的參數(shù)方程;
(2)在曲線C2上求點(diǎn)P,使得點(diǎn)P到直線l:x+y-4$\sqrt{5}$=0的距離最大,并求出距離最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若方程x2+ax+2b=0的一個根在(0,1)內(nèi),另一個根在(1,2)內(nèi),則$\frac{b-a}{a-1}$的取值范圍是(-1,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點(diǎn)為F(1,0),直線y=x-$\sqrt{7}$與橢圓有且僅有一個交點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l交橢圓于A,B兩點(diǎn),且$\overrightarrow{FA}•\overrightarrow{FB}$=0,試求l在x軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax+b-lnx表示的曲線在點(diǎn)(2,f(2))處的切線方程x-2y-2ln2=0
(1)求a,b的值;
(2)若f(x)≥kx-2對于x∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍;
(3)求證:n∈N*時,n(n+1)≤2$\frac{{e}^{n}-1}{e-1}$.

查看答案和解析>>

同步練習(xí)冊答案