分析 (1)根據(jù)正弦定理進(jìn)行化簡(jiǎn)即可求角A的大小;
(2)由正弦定理可得$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$=$\frac{4\sqrt{3}}{3}$,可得b+c=$\frac{4\sqrt{3}}{3}$(sinB+sinC)=$\frac{4\sqrt{3}}{3}$sin($\frac{π}{3}$+C),再利用三角函數(shù)的單調(diào)性即可得出.
解答 解:(1)∵$\frac{cosA}{cosC}$=-$\frac{a}{2b+c}$,
∴$\frac{cosA}{cosC}$=-$\frac{a}{2b+c}$=-$\frac{sinA}{2sinB+sinC}$,
即2sinBcosA+cosAsinC=-sinAcosC,
即2sinBcosA=-(sinAcosC+cosAsinC)=-sin(A+C)=-sinB,
∵sinB≠0,
∴cosA=-$\frac{1}{2}$,即A=$\frac{2π}{3}$;
(2)由正弦定理可得$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$=$\frac{2}{sin\frac{2π}{3}}=\frac{2}{\frac{\sqrt{3}}{2}}=\frac{4\sqrt{3}}{3}$.
∴b+c=$\frac{4\sqrt{3}}{3}$(sinB+sinC)=$\frac{4\sqrt{3}}{3}$[sin($\frac{π}{3}$-C)+sinC]
=$\frac{4\sqrt{3}}{3}$sin($\frac{π}{3}$+C),
∵0<C<$\frac{π}{3}$,
∴$\frac{π}{3}$<C+$\frac{π}{3}$<$\frac{2π}{3}$,
∴$\frac{\sqrt{3}}{2}$<sin(C+$\frac{π}{3}$)≤1,
∴2<$\frac{4\sqrt{3}}{3}$sin($\frac{π}{3}$+C)≤$\frac{4\sqrt{3}}{3}$,
故b+c的取值范圍為:(2,$\frac{4\sqrt{3}}{3}$].
點(diǎn)評(píng) 本題考查了正弦定理、兩角和差的正弦公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
零件數(shù)x(個(gè)) | 10 | 20 | 30 | 40 | 50 |
加工時(shí)間y(分鐘) | 62 | 68 | 75 | 81 | 89 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com