13.已知向量$\overrightarrow{a}$,$\overrightarrow$均為單位向量,它們的夾角為$\frac{2π}{3}$,則|$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 由條件即可得到$|\overrightarrow{a}|=1,|\overrightarrow|=1$,且$\overrightarrow{a},\overrightarrow$夾角為$\frac{2π}{3}$,從而進(jìn)行數(shù)量積的運(yùn)算便可求出$|\overrightarrow{a}+\overrightarrow{|}^{2}=1$,從而便可得出$|\overrightarrow{a}+\overrightarrow|$的值.

解答 解:根據(jù)題意,$|\overrightarrow{a}|=|\overrightarrow|=1$,$<\overrightarrow{a},\overrightarrow>=\frac{2π}{3}$;
∴$|\overrightarrow{a}+\overrightarrow{|}^{2}={\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=$1+2•1•1•cos\frac{2π}{3}+1=1$;
∴$|\overrightarrow{a}+\overrightarrow|=1$.
故選:A.

點(diǎn)評(píng) 考查單位向量的概念,向量夾角的概念,以及向量數(shù)量積的運(yùn)算及計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A、B是非空集合且A⊆B,則下列說(shuō)法錯(cuò)誤的是(  )
A.?x0∈A,x0∈BB.?x0∈A,x0∈BC.A∩B=AD.A∩(∁uB)≠∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某省去年高三200000名考生英語(yǔ)聽(tīng)力考試服從正態(tài)分布N(17,9),現(xiàn)從某校高三年級(jí)隨機(jī)抽取50名考生的成績(jī),發(fā)現(xiàn)全部介于[6,30]之間,將成績(jī)按如圖方式分成6組:第1組[6,10),第2組[10,14),…,第6組[26,30),如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)估算該校50名考生的眾數(shù)和中位數(shù);
(Ⅱ)求這50名考生成績(jī)?cè)赱22,30]內(nèi)的人數(shù);
(Ⅲ)從這50名考生成績(jī)?cè)赱22,30]內(nèi)的人中任意抽取2人,該2人成績(jī)排名(從高到低)在全省前260名的人數(shù)記為X,求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.執(zhí)行如圖的程序框圖,若輸入k=63,則輸出的n=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.向量$\overrightarrow a=(3,-4),|\overrightarrow b|=2$,若$\overrightarrow a•\overrightarrow b=-5$,則向量$\overrightarrow a,\overrightarrow b$的夾角為( 。
A.60°B.30°C.135°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.復(fù)數(shù)z滿足(z-1)(1+i)=2i,則|z|=( 。
A.1B.2C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知復(fù)數(shù)$z=\frac{i}{i+1}$,那么復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,已知點(diǎn)D在△ABC的BC邊上,且∠DAC=90°,cosC=$\frac{\sqrt{6}}{3}$,AB=6,BD=$\sqrt{6}$,則ADsin∠BAD=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,已知a、b、c分別是角A、B、C的對(duì)邊,且滿足$\frac{cosA}{cosC}$=-$\frac{a}{2b+c}$.
(1)求角A的大;
(2)若a=2,求b+c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案