2.建立集合A={a,b,c}到集合B={-1,0,1}的映射f:A→B,滿足f(a)+f(b)+f(c)=0的不同映射有(  )
A.6個(gè)B.7個(gè)C.8個(gè)D.9個(gè)

分析 根據(jù)題意,這樣的映射有兩類,①f(a),f(b),f(c)全為0;②f(a),f(b),f(c)各不相等,分別求出再相加即可.

解答 解:因?yàn)閒(a)+f(b)+f(c)=0,
所以對(duì)應(yīng)有兩大類:
①若f(a),f(b),f(c)全為0,
即f(a)=f(b)=f(c)=0,僅此一種;
②若f(a),f(b),f(c)各不相等,
即f(a),f(b),f(c)與-1,0,1進(jìn)行一一對(duì)應(yīng),
這樣的對(duì)應(yīng)共有6種,
綜合以上討論得,滿足f(a)+f(b)+f(c)=0的映射共有7種,
故答案為:B.

點(diǎn)評(píng) 本題主要考查了映射的定義及其應(yīng)用,合理分類討論是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.不等式$\left\{\begin{array}{l}{3x-2y-2>0}\\{x+4y+4>0}\\{2x+y-6<0}\end{array}\right.$的整數(shù)解的個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若不等式組$\left\{\begin{array}{l}x-y≥0\\ x+2y≤2\\ y≥0\\ x+y≤a\end{array}\right.$表示的平面區(qū)域是一個(gè)三角形,則實(shí)數(shù)a∈∈$({0,\frac{4}{3}}]∪[{2,+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=x2-1(x∈R)的值域是( 。
A.[1,+∞)B.(-1,1]C.[-1,+∞)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.雙曲線$\frac{{x}^{2}}{12}-\frac{{y}^{2}}{3}=1$的焦點(diǎn)為F1和F2,點(diǎn)P在雙曲線上,如果線段PF1的中點(diǎn)在y軸上,|PF1|:|PF2|=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.根據(jù)如圖所示的偽代碼,最后輸出的S的值為55.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.下列有關(guān)命題的敘述,正確的序號(hào)為②④.
①若p∨q為真命題,則p∧q為真命題.
②“x>5”是“x2-4x-5>0”的充分不必要條件.
③曲線$\frac{x^2}{20-m}+\frac{y^2}{6-m}=1\;(m<6)$與曲線$\frac{x^2}{5-n}+\frac{y^2}{9+n}=1\;(n>5)$的焦點(diǎn)相同.
④已知命題p:F1,F(xiàn)2是平面內(nèi)距離為6的兩定點(diǎn),動(dòng)點(diǎn)M在此平面內(nèi),且滿足|MF1|+|MF2|=8,則M點(diǎn)的軌跡是橢圓;命題q:F1,F(xiàn)2是平面內(nèi)距離為6的兩定點(diǎn),動(dòng)點(diǎn)M在此平面內(nèi),且滿足||MF1|-|MF2||=6,則M點(diǎn)在軌跡是雙曲線;則命題p∧?q是真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)已知在△ABC中,sinA+cosA=$\frac{1}{5}$,求tanA的值.
(2)已知π<a<2π,cos(α-7π)=-$\frac{3}{5}$,求sin(3π+α)•tan(α-$\frac{7}{2}$π)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.己知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)為A,左焦點(diǎn)為F,上頂點(diǎn)為B,O為坐標(biāo)原點(diǎn),若∠BFO=60°,S△ABF=$\sqrt{3}$,則該橢圓的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{6}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案