12.已知矩形ABCD,AB=6,BC=4,經(jīng)過(guò)A、B、C、D四頂點(diǎn)的橢圓(BC經(jīng)過(guò)橢圓的焦點(diǎn))的離心率是( 。
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{1+\sqrt{10}}$

分析 判斷橢圓的焦點(diǎn)坐標(biāo)所在坐標(biāo)軸,求出c,利用通經(jīng)求出a,然后求解離心率.

解答 解:矩形ABCD,AB=6,BC=4,經(jīng)過(guò)A、B、C、D四頂點(diǎn)的橢圓(BC經(jīng)過(guò)橢圓的焦點(diǎn))
不妨令橢圓的焦點(diǎn)坐標(biāo)在x軸,
設(shè)橢圓方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$,
由題意可知(3,2)在橢圓上.c=3,
$\frac{^{2}}{a}=2$,可得a2-c2=2a,解得a=1+$\sqrt{10}$.
橢圓的離心率為:$\frac{3}{1+\sqrt{10}}$.
故選:D.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在銳角△ABC中,∠A、∠B、∠C的對(duì)邊分別為a、b、c,已知2csinA=$\sqrt{3}$a,sin(B-A)=cosC.
(1)求∠A、∠B、∠C;
(2)若△ABC的面積為3+$\sqrt{3}$,求a、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知等比數(shù)列{an},前n項(xiàng)和為Sn,a1+a2=3,a2+a3=6,則S6=63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.關(guān)于x的方程$\sqrt{2}$sin(x+$\frac{π}{4}$)=2m在[0,π]內(nèi)有相異兩實(shí)根,則實(shí)數(shù)m的取值范圍為[$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}滿足條件:a1=t,an+1=2an+1(n∈N*
(1)判斷數(shù)列{an+1}(n∈N*)是否是等比數(shù)列?
(2)若t=1,令Cn=$\frac{{2}^{n}}{{a}_{n}{a}_{n+1}}$,記Tn=C1+C2+C3+…+Cn(n∈N*).求證:①Cn=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$;②Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.解不等式:$\frac{2x+1}{x-2}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知P(x,y)是函數(shù)f(x)的圖象上的一點(diǎn),$\overrightarrow{a}$=(1,(x-2)5),$\overrightarrow$=(1,y-2x),$\overrightarrow{a}$∥$\overrightarrow$,數(shù)列{an}是公差不為零的等差數(shù)列,且f(a1)+f(a2)+…+f(a9)=36,則a1+a2+…+a9=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M為PB的中點(diǎn).
(Ⅰ)求證:AM⊥平面PBC;
(Ⅱ)求二面角A-PC-B的余弦值;
(Ⅲ)證明:在線段PC上存在點(diǎn)D,使得BD⊥AC,并求$\frac{PD}{PC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知雙曲線x2-y2=4的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)Pn(xn,yn)(n=1,2,3…)在其左支上,且滿足|Pn+1F1|=|PnF2|,P1F1⊥F1F2,則x2015=-4030$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案