分析 (1)由an+1=2an+1,得到an+1+1=2(an+1),分a1=t=-1和a1=t≠-1,說明數(shù)列{an+1}是不是等比數(shù)列;
(2)①由t=1,得a1+1=2,由等比數(shù)列的通項公式求得${a}_{n}={2}^{n}-1$,代入Cn=$\frac{{2}^{n}}{{a}_{n}{a}_{n+1}}$,裂項后可得Cn=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$;
②由Tn=C1+C2+C3+…+Cn,裂項相消求和后得答案.
解答 (1)解:由an+1=2an+1,得an+1+1=2(an+1),
若a1=t=-1,則a1+1=0,數(shù)列{an+1}不是等比數(shù)列;
若a1=t≠-1,則a1+1≠0,數(shù)列{an+1}是首項為t+1,公比為2的等比數(shù)列,
(2)證明:①由t=1,則a1+1=2,
∴an+1=2•2n-1=2n,則${a}_{n}={2}^{n}-1$,
∴Cn=$\frac{{2}^{n}}{{a}_{n}{a}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$,即Cn=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$;
②Tn=C1+C2+C3+…+Cn=$(\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}})+(\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}})+…+(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})$
=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{n+1}}=1-\frac{1}{{2}^{n+1}-1}<1$.
點評 本題考查了等比關(guān)系的確定,考查了裂項相消法求數(shù)列的前n項和,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1)(2) | B. | (2)(3) | C. | (3)(4) | D. | (1)(3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{1+\sqrt{10}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com