1.已知函數(shù)f(x)=x2-1g(10x+10),若0<b<1,則f(b)的值滿足(  )
A.f(b)>f(-$\frac{9}{10}$)B.f(b)>0C.f(b)>f($\frac{3}{2}$)D.f(b)<f($\frac{3}{2}$)

分析 根據(jù)函數(shù)與方程之間的關(guān)系,轉(zhuǎn)化為兩個函數(shù)的大小比較,結(jié)合數(shù)形結(jié)合進(jìn)行比較即可得到結(jié)論.

解答 解:f(x)=x2-1g(10x+10)=x2-1g(x+1)-1,
則由x+1>0得x>-1,即函數(shù)的定義域為(-1,+∞),
設(shè)g(x)=x2,h(x)=1g(10x+10)=1+lg(x+1),
當(dāng)0<x<1時,0<g(x)<1,
h(x)在0<x<1上為增函數(shù),則1<h(x)<1+lg2,
則此時h(x)>g(x),
即f(x)=g(x)-h(x)<0,即f(b)<0,則B錯誤.
當(dāng)0<x<1時,g(x)<h(x),即此時f(x)<0,
即當(dāng)0<b<1,則f(b)<0,
當(dāng)x=$\frac{3}{2}$時,f($\frac{3}{2}$)=($\frac{3}{2}$)2-1g(10•$\frac{3}{2}$+10)=$\frac{9}{4}$-lg25>0,
則f(b)<f($\frac{3}{2}$),
故選:D.

點評 本題主要考查函數(shù)值的大小比較,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為兩個函數(shù)的大小比較,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.以下命題中,不正確的個數(shù)為( 。
①$|\overrightarrow a|-|\overrightarrow b|=|\overrightarrow a+\overrightarrow b|$是$\overrightarrow a,\overrightarrow b$共線的充要條件;
②若$\overrightarrow a∥\overrightarrow b$,則存在唯一的實數(shù)λ,使$\overrightarrow a=λ\overrightarrow b$;
③若$\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow c=0$,則$\overrightarrow a=\overrightarrow c$;
④若$\overrightarrow a,\overrightarrow b,\overrightarrow c$為空間的一個基底,則$\overrightarrow a+\overrightarrow b,\overrightarrow b+\overrightarrow c,\overrightarrow c+\overrightarrow a$構(gòu)成空間的另一個基底;
⑤$|(\overrightarrow a•\overrightarrow b)•\overrightarrow c|=|\overrightarrow a|•|\overrightarrow b|•|\overrightarrow c|$.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$sinα=\frac{3}{5}$,且$\frac{π}{2}<α<π$.
(Ⅰ)求cosα的值;
(Ⅱ)求$tan(\frac{π}{4}+α)$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.${log_2}\sqrt{2}+{log_2}\frac{{\sqrt{2}}}{2}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.以下四個命題:
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每20分鐘從中抽取一件產(chǎn)品進(jìn)行某項指標(biāo)檢測,這樣的抽樣是分層抽樣;
②對于兩個相關(guān)隨機(jī)變量x,y而言,點P($\overline{x}$,$\overline{y}$)在其回歸直線上;
③在回歸直線方程$\stackrel{∧}{y}$=0.2x+12中,當(dāng)解釋變量x每增加一個單位時,預(yù)報變量$\stackrel{∧}{y}$平均增加0.2個單位;
④兩個隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于1;
其中真命題為( 。
A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若圓錐的側(cè)面展開圖的圓心角為90°,半徑為r,則該圓錐的全面積為( 。
A.$\frac{π{r}^{2}}{16}$B.$\frac{3π{r}^{2}}{16}$C.$\frac{π{r}^{2}}{4}$D.$\frac{5π{r}^{2}}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{m}$,$\overrightarrow{AC}$=$\overrightarrow{n}$,若點D滿足$\overrightarrow{BD}$=2$\overrightarrow{DC}$,則$\overrightarrow{AD}$=( 。
A.$\frac{1}{3}\overrightarrow{n}$+$\frac{2}{3}\overrightarrow{m}$B.$\frac{5}{3}$$\overrightarrow{m}$-$\frac{2}{3}\overrightarrow{n}$C.$\frac{2}{3}\overrightarrow{n}$-$\frac{1}{3}\overrightarrow{m}$D.$\frac{2}{3}\overrightarrow{n}$+$\frac{1}{3}\overrightarrow{m}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.曲線f(x)=$\frac{-4}{\sqrt{3}({e}^{x}+1)}$在點(0,f(0))處的切線方程為(  )
A.x-$\sqrt{3}$y-2=0B.$\sqrt{3}$x+y-2=0C.x-$\sqrt{3}$y+2=0D.$\sqrt{3}$x+y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,AB=3,AC=4,BC=5,求$\overrightarrow{AC}$$•\overrightarrow{AB}$、$\overrightarrow{AC}$$•\overrightarrow{BC}$、$\overrightarrow{AB}$$•\overrightarrow{BC}$.

查看答案和解析>>

同步練習(xí)冊答案