分析 (Ⅰ)先求出函數(shù)f(x)的導(dǎo)數(shù),求出斜率k=4,從而求出切線方程;
(Ⅱ)設(shè)出切點(diǎn),表示出切線方程,將P(2,4)代入切線方程即可求出答案.
解答 解:(Ⅰ)∵f′(x)=x2,
∴在點(diǎn)P(2,4)處的切線的斜率k=f′(2)=4,
∴函數(shù)f(x)在點(diǎn)P處的切線方程為y-4=4(x-2),
即4x-y-4=0
(Ⅱ)設(shè)函數(shù)f(x)與過點(diǎn)P(2,4)的切線相切于點(diǎn)$A({x_0},\frac{1}{3}{x_0}^3+\frac{4}{3})$,
則切線的斜率$k={f^'}({x_0})={x_0}^2$
∴切線方程為$y-(\frac{1}{3}{x_0}^3+\frac{4}{3})={x_0}^2(x-{x_0})$,
即$y={x_0}^2•x-\frac{2}{3}{x_0}^3+\frac{4}{3}$
∵點(diǎn)P(2,4)在切線上
∴4=2${{x}_{0}}^{2}$-$\frac{2}{3}$${{x}_{0}}^{3}$+$\frac{4}{3}$即:${{x}_{0}}^{3}$-3${{x}_{0}}^{2}$+4=0,
∴(x0+1)${{(x}_{0}-2)}^{2}$=0,解得:x0=-1或x0=2,
∴所求的切線方程為x-y+2=0或4x-y-4=0.
點(diǎn)評(píng) 本題考查了曲線的切線方程問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2 | B. | f(x)=2x | C. | f(x)=x3 | D. | f(x)=$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1] | B. | (-1,$\frac{1}{2}$) | C. | [-1,$\frac{1}{2}$) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | 1+$\sqrt{3}$ | C. | 1 | D. | $\frac{1+\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{{x|x=kπ+\frac{π}{3},k∈z}\right\}$ | B. | $\left\{{x|x=kπ-\frac{π}{3},k∈z}\right\}$ | C. | $\left\{{x|x=2kπ±\frac{π}{3},k∈z}\right\}$ | D. | $\left\{{x|x=kπ±\frac{π}{3},k∈z}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com