分析 (1)分別令n=1,2,3,列出方程組,能夠求出求a1,a2,a3;
(2)猜想:an=n,由2Sn=an2+n可知,當n≥2時,2Sn-1=an-12+(n-1),所以an2=2an+an-12-1,再用數(shù)學(xué)歸納法進行證明.
解答 解:(1)∵an2,Sn,n成等差數(shù)列,∴2Sn=an2+n
∵Sn-Sn-1=an,∴$2{a}_{n}={a}_{n}^{2}-{a}_{n-1}^{2}+1$,∴$({a}_{n}-1)^{2}={a}_{n-1}^{2}$,∴an-an-1=±1
∵an>0,∴an-an-1=1
分別令n=1,2,3,得
$\left\{\begin{array}{l}{2{a}_{1}={a}_{1}^{2}+1}\\{2({a}_{1}+{a}_{2})={a}_{2}^{2}+2}\\{2({a}_{1}+{a}_{2}+{a}_{3})={a}_{3}^{2}+2}\end{array}\right.$∵an>0,∴a1=1,a2=2,a3=3.
(2)由(1)的結(jié)論:猜想an=n
(。┊攏=1時,a1=1成立;
(ⅱ)假設(shè)當n=k(k≥2)時,ak=k.
那么當n=k+1時,
[ak+1-(k+1)][ak+1+(k-1)]=0,
∵ak+1>0,k≥2,∴ak+1+(k-1)>0,
∴ak+1=k+1.
這就是說,當n=k+1時也成立,
∴an=n(n≥2).顯然n=1時,也適合.
綜合(1)(2)可知對于n∈N*,an=n都成立.
點評 本題主要考查數(shù)學(xué)歸納法的應(yīng)用,由數(shù)列的前n項和求通項公式,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{3}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,-2) | B. | (-2,1) | C. | (-1,2) | D. | (2,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}π}{2015}$ | B. | $\frac{2\sqrt{2}π}{2015}$ | C. | $\frac{2π}{2015}$ | D. | $\frac{4π}{2015}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com