13.已知f(x)=sin(2015x+$\frac{3π}{8}$)+sin(2015x-$\frac{π}{8}$)的最大值為A,若存在實(shí)數(shù)x1,x2,使得對(duì)任意實(shí)數(shù)x總有f(x1)≤f(x)≤f(x2)成立,則A|x1-x2|的最小值為(  )
A.$\frac{\sqrt{2}π}{2015}$B.$\frac{2\sqrt{2}π}{2015}$C.$\frac{2π}{2015}$D.$\frac{4π}{2015}$

分析 由條件利用三角恒等變換化簡(jiǎn)函數(shù)f(x)的解析式,再利用正弦函數(shù)的周期性和最值,求得 A|x1-x2|的最小值.

解答 解:f(x)=sin(2015x+$\frac{3π}{8}$)+sin(2015x-$\frac{π}{8}$)=
sin2015xcos$\frac{3π}{8}$+cos2015xsin$\frac{3π}{8}$+sin2015xcos$\frac{π}{8}$-cos2015xsin$\frac{π}{8}$
=sin2015xsin$\frac{π}{8}$+cos2015xcos$\frac{π}{8}$+sin2015xcos$\frac{π}{8}$-cos2015xsin$\frac{π}{8}$
=sin2015x(sin$\frac{π}{8}$+cos$\frac{π}{8}$)+cos2015x(cos$\frac{π}{8}$-sin$\frac{π}{8}$)
=sin2015x•($\frac{\sqrt{2-\sqrt{2}}}{2}$+$\frac{\sqrt{2+\sqrt{2}}}{2}$)+cos2015x•($\frac{\sqrt{2+\sqrt{2}}}{2}$-$\frac{\sqrt{2-\sqrt{2}}}{2}$)
=$\sqrt{2}$sin(2015x+α),
其中,cosα=$\frac{\frac{\sqrt{2+\sqrt{2}}}{2}+\frac{\sqrt{2-\sqrt{2}}}{2}}{\sqrt{2}}$,sinα=$\frac{\frac{\sqrt{2+\sqrt{2}}}{2}-\frac{\sqrt{2-\sqrt{2}}}{2}}{\sqrt{2}}$,
故f(x) 的最大值為A=$\sqrt{2}$.
由題意可得,|x1-x2|的最小值為$\frac{T}{2}$=$\frac{π}{2015}$,∴A|x1-x2|的最小值為$\frac{\sqrt{2}π}{2015}$,
故選:A.

點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性和最值,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,并且滿足an2,Sn,n成等差數(shù)列,an>0(n∈N*).
(Ⅰ)寫出an與an-1(n≥2)的關(guān)系式并求a1,a2,a3
(Ⅱ)猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線C的離心率為$\sqrt{2}$,直線l與雙曲線C交于A,B兩點(diǎn),線段AB中點(diǎn)M在第一象限,并且在拋物線y2=2px(p>0)上,且M到拋物線焦點(diǎn)的距離為p,則直線l的斜率為( 。
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)1+2i=2i(a+bi)(其中i為虛數(shù)單位,a,b∈R),則a+b的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知λ,μ為常數(shù),且為正整數(shù),λ≠1,無窮數(shù)列{an}的各項(xiàng)均為正整數(shù),其前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,Sn=λan-μ.記數(shù)列{an}中任意兩不同項(xiàng)的和構(gòu)成的集合為A.
(1)證明:無窮數(shù)列{an}為等比數(shù)列,并求λ的值;
(2)若2015∈A,求μ的值;
(3)對(duì)任意的n∈N*,記集合Bn={x|3μ•2n-1<x<3μ•2n,x∈A}中元素的個(gè)數(shù)為bn,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某電視臺(tái)推出一檔游戲類綜藝節(jié)目,選手面對(duì)1-5號(hào)五扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂,選手需正確回答這首歌的名字,回答正確,大門打開,并獲得相應(yīng)的家庭夢(mèng)想基金,回答每一扇門后,選手可自由選擇帶著目前的獎(jiǎng)金離開,還是繼續(xù)挑戰(zhàn)后面的門以獲得更多的夢(mèng)想基金,但是一旦回答錯(cuò)誤,游戲結(jié)束并將之前獲得的所有夢(mèng)想基金清零;整個(gè)游戲過程中,選手有一次求助機(jī)會(huì),選手可以詢問親友團(tuán)成員以獲得正確答案.
1-5號(hào)門對(duì)應(yīng)的家庭夢(mèng)想基金依次為3000元、6000元、8000元、12000元、24000元(以上基金金額為打開大門后的累積金額,如第三扇大門打開,選手可獲基金總金額為8000元);設(shè)某選手正確回答每一扇門的歌曲名字的概率為pi(i=1,2,…,5),且pi=$\frac{6-i}{7-i}$(i=1,2,…,5),親友團(tuán)正確回答每一扇門的歌曲名字的概率均為$\frac{1}{5}$,該選手正確回答每一扇門的歌名后選擇繼續(xù)挑戰(zhàn)后面的門的概率均為$\frac{1}{2}$;
(1)求選手在第三扇門使用求助且最終獲得12000元家庭夢(mèng)想基金的概率;
(2)若選手在整個(gè)游戲過程中不使用求助,且獲得的家庭夢(mèng)想基金數(shù)額為X(元),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若cosα=$\frac{1}{3}$,則sin$({\frac{π}{2}+2α})$-$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知雙曲線$\frac{y^2}{m}-{x^2}$=1(m>0)的一個(gè)焦點(diǎn)與拋物線y=$\frac{1}{8}{x^2}$的焦點(diǎn)重合,則此雙曲線的離心率為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖是某幾何體的三視圖(單位:cm),則該幾何體的表面積是14+2$\sqrt{13}$cm2,體積為4cm3

查看答案和解析>>

同步練習(xí)冊(cè)答案