14.已知圓C:x2+y2-2x-1=0,直線l:3x-4y+12=0,圓C上任意一點(diǎn)P到直線l的距離小于2的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

分析 根據(jù)幾何概型,求出圓心到直線的距離,利用幾何概型的概率公式分別求出對(duì)應(yīng)的測(cè)度即可得到結(jié)論.

解答 解:由題意知圓的標(biāo)準(zhǔn)方程為(x-1)2+y2=2的圓心是(1,0),
圓心到直線3x-4y+12=0的距離是d=$\frac{15}{5}$=3,
當(dāng)與3x-4y+12=0平行,且在直線下方距離為2的平行直線為3x-4y+b=0,
則d=$\frac{|b-12|}{5}$=2,則|b-12|=10,
即b=22(舍)或b=2,此時(shí)直線為3x-4y+2=0,
則此時(shí)圓心到直線3x-4y+2=0的距離d=1,即三角形ACB為直角三角形,
當(dāng)P位于弧ADB時(shí),此時(shí)P到直線l的距離小于2,
則根據(jù)幾何概型的概率公式得到P=$\frac{90}{360}$=$\frac{1}{4}$
故選:D.

點(diǎn)評(píng) 本題主要考查幾何概型的概率計(jì)算,利用條件確定圓C上的點(diǎn)A到直線l的距離小于2對(duì)應(yīng)區(qū)域是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知直線l:$\left\{\begin{array}{l}{x=t}\\{y=t+1}\end{array}\right.$(t為參數(shù)),圓C:ρ=2cosθ,則圓心C到直線l的距離是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1.
(1)求函數(shù)f(x)的最小正周期和對(duì)稱中心;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),橢圓E的右焦點(diǎn)到直線x-y+1=0的距離為$\sqrt{2}$,橢圓E的右頂點(diǎn)到右焦點(diǎn)與到直線x=2的距離之比為$\frac{{\sqrt{2}}}{2}$
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過原點(diǎn)O作兩條動(dòng)直線AC、BD分別交橢圓E與A、C和B、D兩點(diǎn),且滿足$\overrightarrow{AC}•\overrightarrow{BD}$=0,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.2015年高考結(jié)束,某學(xué)校對(duì)高三畢業(yè)生的高考成績(jī)進(jìn)行調(diào)查,高三年級(jí)共有1到6個(gè)班,從六個(gè)班隨機(jī)抽取50人,對(duì)于高考的考試成績(jī)達(dá)到自己的實(shí)際水平的情況,并將抽查的結(jié)果制成如下的表格,
班級(jí)123456
頻數(shù)610121264
達(dá)到366643
(1)根據(jù)上述的表格,估計(jì)該校高三學(xué)生2015年的高考成績(jī)達(dá)到自己的實(shí)際水平的概率;
(2)若從5班、6班的調(diào)查中各隨機(jī)選取2同學(xué)進(jìn)行調(diào)查,調(diào)查的4人中高考成績(jī)沒有達(dá)到實(shí)際水平的人數(shù)為ξ,求隨機(jī)ξ的分布列和數(shù)學(xué)的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知變量x,y滿足$\left\{{\begin{array}{l}{x-y+2≥0}\\{3x+y-6≤0}\\{x+y-2≥0}\end{array}}\right.$,則z=x2+y2的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知△ABC是等腰直角三角形,∠A=90°,且$\overrightarrow{AB}=\overrightarrow a+\overrightarrow b$,$\overrightarrow{AC}=\overrightarrow a-\overrightarrow b$,若$\overrightarrow a=(cosθ,sinθ),θ∈R$,則△ABC的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)向量$\overrightarrow{a}$=(-1,2),向量$\overrightarrow$=(1,λ),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)λ的值等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下面四個(gè)命題中,
①復(fù)數(shù)z=a+bi,則實(shí)部、虛部分別是a,b;
②復(fù)數(shù)z滿足|z+1|=|z-2i|,則 z對(duì)應(yīng)的點(diǎn)集合構(gòu)成一條直線;
③由向量$\overrightarrow a$的性質(zhì)$|\overrightarrow a{|^2}={\overrightarrow a^2}$,可類比得到復(fù)數(shù)z的性質(zhì)|z|2=z2;
④i為虛數(shù)單位,則1+i+i2+…+i2016=1.
正確命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案