6.等比數(shù)列{an}的前n項(xiàng)和為Sn,a2=2a1,則$\frac{{S}_{4}}{{a}_{4}}$的值是$\frac{15}{8}$.

分析 由已知求出等比數(shù)列的公比,代入等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式求出S4,a4,則答案可求.

解答 解:在等比數(shù)列{an}中,
由a2=2a1,得q=2,
${S}_{4}=\frac{{a}_{1}(1-{2}^{4})}{1-2}=15{a}_{1}$,${a}_{4}={a}_{1}{q}^{3}=8{a}_{1}$,
∴$\frac{{S}_{4}}{{a}_{4}}$=$\frac{15{a}_{1}}{8{a}_{1}}=\frac{15}{8}$.
故答案為:$\frac{15}{8}$.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的前n項(xiàng)和,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(tanx)=$\frac{1}{co{s}^{2}x}$,則f(-$\sqrt{3}$)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=|sin2x|的最小正周期為(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),定點(diǎn)Q(m,0),那么“m<1”是“|PQ|的最小值為|m|”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{m}$=(cosx,sinx)和$\overrightarrow{n}$=($\sqrt{2}$-sinx,cosx),
(1)設(shè)f(x)=$\overrightarrow{m}•\overrightarrow{n}$,求函數(shù)y=f($\frac{π}{3}$-2x)的單調(diào)區(qū)間;
(2)若x∈[π,2π],求|$\overrightarrow{m}$-$\overrightarrow{n}$|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在四棱錐P-ABCD中,平面PAD⊥平面ABCD,△PAD為正三角形,底面ABCD為邊長(zhǎng)為2的正方形,點(diǎn)E為棱PB的中點(diǎn),則點(diǎn)P到平面ACE的距離為(  )
A.$\frac{\sqrt{7}}{7}$B.$\frac{\sqrt{21}}{7}$C.$\frac{\sqrt{35}}{7}$D.$\frac{2\sqrt{21}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC的三條邊長(zhǎng)為a,b,c,則“△ABC是等邊三角形”是“a2+b2+c2=ab+ac+bc”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若一個(gè)圓同時(shí)過三個(gè)點(diǎn)A(0,1)、B(2,1)、C(3,4),求該圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$=(x-1,x+1),$\overrightarrow$=(-2,1),若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)x=-$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案