17.函數(shù)y=|sin2x|的最小正周期為( 。
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

分析 利用三角函數(shù)的周期公式求解即可.

解答 解:函數(shù)y=|sin2x|的最小正周期為:$\frac{1}{2}×\frac{2π}{2}$=$\frac{π}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查三角函數(shù)的周期的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在空間四邊形ABCD中,E,F(xiàn),G分別在棱AB,BC,CD上(與頂點(diǎn)不重合).
(1)若AC∥平面EFG,且BD∥平面EFG,$\frac{BE}{AE}=\frac{3}{4}$,求$\frac{FG}{BD}$;
(2)若E,F(xiàn),G分別是棱AB,BC,CD的中點(diǎn),試分析直線AC,BD與平面EFG的關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=2sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{3}$cos$\frac{x}{2}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知△ABC的頂點(diǎn)A(0,1),AB邊上的高CD所在的直線方程為x+y-2=0,AC邊上的中線BM所在的直線的方程為:3x+y-5=0.求△ABC的頂點(diǎn)B、C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知tan2θ=$\frac{4}{9}$,θ∈($\frac{π}{2}$,π).
(1)求tan(θ-$\frac{π}{4}$)的值;
(2)求$\frac{2sin(π-θ)cos(-2π-θ)}{si{n}^{2}(\frac{5π}{2}-θ)-3si{n}^{2}(-θ)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx,g(x)=ex,其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…
(1)若函數(shù)φ(x)=f(x)-$\frac{x+1}{x-1}$,求函數(shù)φ(x)的單調(diào)區(qū)間;
(2)若x≥0,g(x)≥kf(x+1)+1恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)直線l為函數(shù)f(x)的圖象上一點(diǎn),A(x0,f(x0))處的切線,證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}是等比數(shù)列,且a1•a3=4,a4=8,則a5的值為±16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.等比數(shù)列{an}的前n項(xiàng)和為Sn,a2=2a1,則$\frac{{S}_{4}}{{a}_{4}}$的值是$\frac{15}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.請(qǐng)寫一個(gè)圓心落在第二象限,并經(jīng)過坐標(biāo)原點(diǎn)的圓的標(biāo)準(zhǔn)方程為(x+2)2+(y-3)2=13.

查看答案和解析>>

同步練習(xí)冊(cè)答案