已知向量
a
=(sinθ,
3
),
b
=(cosθ,1),且
a
b
,其中θ∈(0,
π
2
).
(1)求sinθ和cosθ的值;
(2)求|2
a
-
b
|.
考點:平面向量共線(平行)的坐標表示
專題:平面向量及應(yīng)用
分析:(1)利用向量的平行以及同角三角函數(shù)的基本關(guān)系式,即可求sinθ和cosθ的值;
(2)通過(1)直接求解|2
a
-
b
|即可.
解答: (1)解:∵向量
a
=(sinθ,
3
),
b
=(cosθ,1),且
a
b

∴sinθ=
3
cosθ
                         (2分)
∵sin2θ+cos2θ=1,θ∈(0,
π
2
).
解得sinθ=
3
2
,cosθ=
1
2
,
sinθ=
3
2
,cosθ=
1
2
.…(6分)
(2)2
a
=(
3
,2
3
),2
a
-
b
=(
3
-
1
2
,2
3
-1)
…(9分)
|2
a
-
b
|=
(
3
-
1
2
)2+(2
3
-1)2
=
15
-
5
2
…(12分)
點評:本題考查向量的平行條件的應(yīng)用,同角三角函數(shù)的基本關(guān)系式,向量的模的求法,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+x2+x+a,g(x)=2a-x3(x∈R,a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)求函數(shù)f(x)的極值.
(3)若任意x∈[0,1],不等式g(x)≥f(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:i+2i2+3i3+…+2014i2014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于x的方程x2+px+p=0在[0,2]上至少有一實根,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α是第三象限的角,且f(α)=
sin(π-α)cos(2π-α)tan(
2
-α)
cos(-π-α)

(1)化簡f(α);          
(2)若cos(α-
2
)=
1
5
,求f(α)的值;
(3)若α=-1860°,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個零點.
(1)求b的值;
(2)若1是其中一個零點,求f(2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,以原點為極點,x軸的正半軸為極軸建坐標系,已知曲線C:ρsin2θ=acosθ(a>0),已知過點P(-2,-4)的直線l的參數(shù)方程為:
x=-2+
2
2
t
y=-4+
2
2
t
,直線l與曲線C分別交于M,N兩點.
(Ⅰ)寫出曲線C和直線l的普通方程;    
(Ⅱ)若a=2,求線段|MN|的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.

(Ⅰ)當BE=1,是否在折疊后的AD上存在一點P,且
AP
PD
,使得CP∥平面ABEF?若存在,求出λ的值;若不存在,說明理由;
(Ⅱ)設(shè)BE=x,問當x為何值時,三棱錐A-CDF的體積有最大值?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在生產(chǎn)過程中,測得纖維產(chǎn)品的纖度(表示纖維粗細的一種量)共有100個數(shù)據(jù),將數(shù)據(jù)分組如表:
分組頻數(shù)
[1.30,1.34)4
[1.34,1.38)25
[1.38,1.42)30
[1.42,1.46)29
[1.46,1.50)10
[1.50,1.54)2
合計100
(1)列出頻率分布表,并畫出頻率分布直方圖;
(2)估計纖度落在[1.38,1.50)中的概率及纖度小于1.40的概率是多少?
(3)從頻率分布直方圖估計出纖度的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

同步練習冊答案