某公司招收男職員x名,女職員y名,須滿足約束條件
2x-4y≥-7
2x-11≤0
2x+3y-9≥0
則10x+10y的最大值是( 。
A、80B、85C、90D、100
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:由約束條件作出可行域,聯(lián)立方程組求得B點(diǎn)坐標(biāo),得到使目標(biāo)函數(shù)z=10x+10y取得最大值的整解,則答案可求.
解答: 解:由約束條件
2x-4y≥-7
2x-11≤0
2x+3y-9≥0
作出可行域如圖,

由題意可知,x,y∈N*
聯(lián)立
2x-11=0
2x-4y=-7
,解得:B(
11
2
,
9
2
).
∴可行域內(nèi)使10x+10y的值最大的整解為(5,4),
∴10x+10y的最大值為90.
故選:C.
點(diǎn)評(píng):本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,解答此題的關(guān)鍵在于找到符合條件的整解,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線x2=
1
a
y的準(zhǔn)線方程是y-2=0,則a的值是(  )
A、
1
8
B、-
1
8
C、8
D、-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,是一個(gè)幾何體的三視圖,正視圖和側(cè)視圖都是由一個(gè)邊長(zhǎng)為2的等邊三角形和一個(gè)長(zhǎng)為2寬為1的矩形組成.
(1)求此幾何體的表面積;(2)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)的部分圖象如圖:
(1)求函數(shù)f(x)的解析式及單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)圖象向右平移
π
6
個(gè)單位長(zhǎng)度得到函數(shù)m(x)的圖象,g(x)=2bcos2x(b>0且b∈R),G(x)=m(x)+g(x),當(dāng)x∈[0,
π
4
]時(shí),求函數(shù)G(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
是以點(diǎn)A(3,-1)為起點(diǎn),且與向量
b
=(-3,4)平行的單位向量,則向量
a
的終點(diǎn)坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(
1
3
 x2-2x,g(x)=3x-6,求滿足f(x)≥g(x)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=2ln(1+x)+ax2-2x+3(a>0)
(1)求y=f(x)在(0,f(0))處的切線方程;
(2)求y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)y=Acos(2x+φ)(A>0)的圖象關(guān)于(
3
,0)中心對(duì)稱,那么φ的最小正值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)y=f(x)=x-2m2-m+3,其中m∈[-2,2],m∈Z,滿足
(1)定區(qū)間(0,+∞)的增函數(shù);
(2)對(duì)任意的x∈R,都有f(-x)+f(x)=0;
求同時(shí)滿足(1)(2)的冪函數(shù)f(x)的解析式,并求x∈[0,3]時(shí)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案