在花園小區(qū)內(nèi)有一塊三邊長分別為3米、4米、5米的三角形綠化帶,有一只小狗在其內(nèi)部玩耍,若不考慮小狗的大小,則在任意指定的某一時刻,小狗與三角形三個頂點的距離均超過1米的概率是
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:求出三角形的面積;再求出據(jù)三角形的三頂點距離小于等于1的區(qū)域為三個扇形,三個扇形的和是半圓,求出半圓的面積;利用對理事件的概率公式及幾何概型概率公式求出恰在離三個頂點距離都大于1的地方的概率.
解答: 解:三角形ABC的面積為
1
2
×3×4=6,
離三個頂點距離都不大于1的地方的面積為S=
1
2
×π•12=
π
2

所以在任意指定的某時刻,小狗與三角形三個頂點的距離均超過1米的概率為
P=1-
π
2
6
=1-
π
12

故答案為:1-
π
12
點評:幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關,而與形狀和位置無關.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某校高二年紀在依次數(shù)學必修模塊考試后隨機抽取40名學生的成績,按成績共分為五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100),得到的頻率直方圖如圖所示,同時規(guī)定成績在90分以上的記為A級,成績小于90分的記為B級.
(1)如果用分層抽樣的方法從成績?yōu)锳和B的學生中共選出10人,求成績?yōu)锳和B的學生各選出幾人.
(2)已知a是在(1)中選出的成績?yōu)锽的學生中的一個,若從選出的成績?yōu)锽的學生中選出2人參加某問卷調(diào)查,求a被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=lnx-ax,(a∈R).
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)當lnx<ax對于x∈(0,+∞)上恒成立時,求a的取值范圍;
(Ⅲ)若k,n∈N*,且1≤k≤n,證明:
1
(1+
1
n
)
n
+
1
(1+
2
n
)
n
+…+
1
(1+
k
n
)
n
+…+
1
(1+
n
n
)
n
1
e-1
(1-
1
en
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

成都石室中學校團委進行了一次關于“消防安全”的社會實踐活動,組織部分學生干部在兩個大型小區(qū)隨機抽取了50名居民進行問卷調(diào)查,調(diào)查結(jié)束后,團委會對調(diào)查結(jié)果進行了統(tǒng)計,并將其中“是否知道滅火器使用方法(知道或不知道)”的調(diào)查結(jié)果統(tǒng)計如下表:
年齡(歲)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
頻數(shù)5m151064
知道的人數(shù)468732
(Ⅰ)求上表中的m的值,若從年齡在[20,30)的居民中隨機選取2人,求這2人中至少有1人知道滅火器使用方法的概率;
(Ⅱ)在被調(diào)查的居民中,若從若從年齡在[10,20),[20,30)的居民中各隨機抽取2人參加消防知識講座,記選取的4人中不知道滅火器使用方法的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P為雙曲線
x2
3
-y2=1虛軸的一個端點,Q為雙曲線上的一個動點,則|PQ|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知質(zhì)點按規(guī)律s=2t2+t(距離單位:米:時間單位:秒)運動,那么質(zhì)點在3秒時的瞬時速度為
 
米/秒.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率等于2,它的右準線過拋物線y2=4x的焦點,則雙曲線的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題:“若空間兩條直線a,b分別垂直平面α,則a∥b”學生小夏這樣證明:
設a,b與面α分別相交于A、B,連結(jié)AB
∵a⊥α,b⊥α,AB?α…①
∴a⊥AB,b⊥AB…②
∴a∥b…③
這里的證明有兩個推理,即:①⇒②和②⇒③.
老師評改認為小夏的證明推理不正確,這兩個推理中不正確的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二項式(
x
-
2
x
6展開式中常數(shù)項為
 

查看答案和解析>>

同步練習冊答案