20.過點(diǎn)A(-1,-2)且焦點(diǎn)與橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{9}$=1的兩個(gè)焦點(diǎn)相同的橢圓的標(biāo)準(zhǔn)方程是$\frac{{y}^{2}}{6}+\frac{{x}^{2}}{3}=1$.

分析 先根據(jù)橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{9}$=1得到它的焦點(diǎn),再設(shè)所求的橢圓方程為:$\frac{{y}^{2}}{m}+\frac{{x}^{2}}{m-3}$=1,代入點(diǎn)A的坐標(biāo)即可解出m的值,得到橢圓的標(biāo)準(zhǔn)方程.

解答 解:∵橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{9}$=1中,a2=9,b2=6
∴c2=a2-b2=3,得焦點(diǎn)坐標(biāo)為(0,±$\sqrt{3}$)
故設(shè)所求的橢圓方程為:$\frac{{y}^{2}}{m}+\frac{{x}^{2}}{m-3}$=1,(m>3)
∴$\frac{4}{m}+\frac{1}{m-3}$=1,解之得m=6(m=2不合題意,舍去)
所以橢圓的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{6}+\frac{{x}^{2}}{3}=1$.
故答案為:$\frac{{y}^{2}}{6}+\frac{{x}^{2}}{3}=1$.

點(diǎn)評 本題在已知橢圓與橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{9}$=1的兩個(gè)焦點(diǎn)相同,求橢圓的標(biāo)準(zhǔn)方程,著重考查了橢圓的標(biāo)準(zhǔn)方程與基本概念,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算:
(1)(2$\frac{3}{5}$)0+2-2•(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+($\frac{25}{36}$)0.5+$\sqrt{(-2)^{2}}$;
(2)$\frac{1}{2}$1g$\frac{32}{49}$一$\frac{4}{3}$1g$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,已知△ABC頂點(diǎn)B(-2,0)和C(2,0),頂點(diǎn)A在橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上,則$\frac{sinB+sinC}{sinA}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)為A、右焦點(diǎn)為F,B為橢圓E在第二象限上的點(diǎn),直線BO交橢圓E于點(diǎn)C,若直線BF平分線段AC,則橢圓E的離心率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=2x-5x則函數(shù)f(x)的零點(diǎn)所在區(qū)間可以為( 。
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知一個(gè)橢圓中心在原點(diǎn),焦點(diǎn)在同一坐標(biāo)軸上,焦距為$2\sqrt{13}$.一雙曲線和這橢圓有公共焦點(diǎn),且雙曲線的實(shí)半軸長比橢圓的長半軸長小4,雙曲線離心率與橢圓離心率之比為7:3,求橢圓和雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x2-2x,g(x)=ax+2(a>0),若對任意x1∈R,都存在x2∈[-2,+∞),使得f(x1)>g(x2),則實(shí)數(shù)a的取值范圍是( 。
A.$({\frac{3}{2},+∞})$B.(0,+∞)C.$({0,\frac{3}{2}})$D.$({\frac{3}{2},3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知冪函數(shù)y=f(x)的圖象過點(diǎn)$({3,\sqrt{3}})$,則log2f(2)的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)g(x)=3x,h(x)=9x
(1)解方程:h(x)-24g(x)-h(2)=0;
(2)令$p(x)=\frac{h(x)}{h(x)+3}$,求$p(\frac{1}{2015})+p(\frac{2}{2015})+p(\frac{3}{2015})+…+p(\frac{2014}{2015})$的值;
(3)若$f(x)=\frac{g(x+1)+a}{g(x)+b}$是實(shí)數(shù)集R上的奇函數(shù),且f(h(x)-1)+f(2-k•g(x))>0對任意實(shí)數(shù)x恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案