12.下列選項(xiàng)正確的是(  )
A.p(A|B)=P(B|A)B.P(A∩B|A)=P(B)C.$\frac{P(AB)}{P(B)}$=P(B|A)D.p(A|B)=$\frac{n(AB)}{n(B)}$

分析 根據(jù)條件概率公式及其性質(zhì),可得結(jié)論.

解答 解:根據(jù)條件概率公式及其性質(zhì),可得$\frac{P(AB)}{P(B)}$=P(A|B),P(A|B)=$\frac{n(AB)}{n(B)}$,
故選:D.

點(diǎn)評(píng) 本題考查條件概率公式及其性質(zhì),比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知在數(shù)列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).對(duì)于這個(gè)數(shù)列的遞推公式作一研究,能否得出它的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{{x}^{2}+ax+11}{x+1}$(x∈N*),且[f(x)]min=3,則實(shí)數(shù)a的取值集合是[-$\frac{8}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}(a-1){x}^{2}-2ax+b+2,x≤0\\(a-1)x+b+2,x>0\end{array}\right.$,則以下命題中正確的是(1)(4)(把所有真命題的序號(hào)都填上)
(1)若a=b=2,則不等式f(x)<9的解集為(-1,5);
(2)若a=b=2,則函數(shù)f(x)為單調(diào)函數(shù);
(3)對(duì)任意實(shí)數(shù)a,b,函數(shù)f(x)均為單調(diào)函數(shù);
(4)若不等式f(x)<0的解集為非空集合D,且D⊆(-1,2),則z=2a-b的取值范圍為(4,+∞);
(5)若不等式f(x)<0的解集不可能為空集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,已知sinAcos2$\frac{C}{2}$+sinCcos2$\frac{A}{2}$=$\frac{3}{2}$sinB,求證:a+c=2b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.求函數(shù)y=ln(x+$\sqrt{{x}^{2}+1}$)圖象上斜率為1的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.用對(duì)數(shù)求導(dǎo)法求下列函數(shù)的導(dǎo)數(shù).
(1)xy=yx;
(2)y=(cosx)sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(x-a)^{2},x≤0}\\{x+\frac{4}{x}+3a,x>0}\end{array}\right.$,且f(0)為f(x)的最小值,則實(shí)數(shù)a的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知兩個(gè)等差數(shù)列{an}和{bn}前n項(xiàng)和為An、Bn,$\frac{{A}_{n}}{{B}_{n}}$=$\frac{7n+45}{n+3}$,求$\frac{{a}_{5}}{_{5}}$與$\frac{{A}_{3}}{{B}_{3}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案