設(shè)a,b為實(shí)數(shù),已知不等式組
x+y≥0
x+y≤6
2x-y≥0
y≥ax-b
表示的平面區(qū)域是一個(gè)菱形,則ab=
 
考點(diǎn):二元一次不等式(組)與平面區(qū)域
專題:不等式的解法及應(yīng)用
分析:利用菱形的對(duì)邊平行,及兩組對(duì)邊之間的距離相等,可求a,b的值,從而可得結(jié)論.
解答: 解:由題意,直線2x-y=0與直線y=ax-b平行,所以a=2;
∵不等式組不等式組
x+y≥0
x+y≤6
2x-y≥0
y≥ax-b
表示的平面區(qū)域是一個(gè)菱形,
∴兩組對(duì)邊之間的距離相等,
6
2
=
|b|
5
,
∵y=ax-b的縱截距為負(fù)數(shù),
所以b>0,得到b=3
10

所以ab=2×3
10
=6
10

故答案為:6
10
點(diǎn)評(píng):本題考查了線性規(guī)劃的內(nèi)容,關(guān)鍵是由題意得到直線的斜率a以及由b的意義求出b.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx-ax+2.
(1)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若a>-e時(shí),函數(shù)g(x)=ex-xf′(x)在[
1
2
,3]上有最大值e3,其中f′(x)的導(dǎo)數(shù),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}滿足a1=1,an+1=2an(n∈N*),Sn表示{an}的前n項(xiàng)和
(1)求通項(xiàng)an及a2;
(2)已知{bn}是等差數(shù)列,且滿足b1=a2,b3=a4,求數(shù)列{bn}前10項(xiàng)和T10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-ax(a為常數(shù))的圖象與y軸交于點(diǎn)A,曲線y=f(x)在點(diǎn)A處的切線斜率為-1.
則函數(shù)f(x)的極小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二階矩陣A屬于特征值-1的 一個(gè)特征向量為 
-1
 
3
,屬于特征值7的 一個(gè)特征向量為 
1
 
1

①求矩陣A;
②若方程滿足 AX=
7
14
,求X.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)拋物線y2=4x的焦點(diǎn)F的弦長(zhǎng)為36,求弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos2x+2sinxcosx
(1)求函數(shù)f(x)的最小正周期;
(2)若x∈[0,
π
2
],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若存在正整數(shù)T,對(duì)于任意正整數(shù)n都有an+T=an成立,則稱數(shù)列{an}為周期數(shù)列,周期為T.已知數(shù)列{an}滿足a1=m(m>0),an+1=
an-1,an>1
1
an
,0<an≤1
,關(guān)于下列命題:
①當(dāng)m=
3
4
時(shí),a5=2
②若m=
2
,則數(shù)列{an}是周期為3的數(shù)列;
③對(duì)若a2=4,則m可以取3個(gè)不同的值;
④?m∈Q且m∈[4,5],使得數(shù)列{an}是周期為6.
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題P:方程x2+2x+a=0有實(shí)數(shù)根;命題q:函數(shù)f(x)=(a2-a)x是增函數(shù),若p且q為假命題,且p或q為真命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案