2.在△ABC中,內(nèi)角A、B、C所對的邊長分別是a、b、c,且邊c的長為2,角C為$\frac{π}{3}$,△ABC的面積為$\sqrt{3}$,則a=( 。
A.1B.$\sqrt{3}$C.2D.4

分析 由三角形面積公式及已知可得ab=4,由余弦定理可解得:a+b=4,聯(lián)立即可得解a的值.

解答 解:∵△ABC的面積為$\sqrt{3}$=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab,
∴解得:ab=4①.
∵邊c的長為2,角C為$\frac{π}{3}$,
∴由余弦定理可得:4=a2+b2-ab=(a+b)2-3ab.解得:a+b=4②,
∴a=2.
故選:C.

點(diǎn)評 本題主要考查了三角形面積公式,余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.圓錐的底面半徑為5cm,高為12cm,當(dāng)它的內(nèi)接圓柱的底面半徑為$\frac{30}{7}$時(shí),圓錐的內(nèi)接圓柱全面積有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知某三棱錐的三視圖(單位:cm)如圖所示,那么該三棱錐的體積等于( 。
A.$\frac{3}{2}$cm3B.2cm3C.3cm3D.9cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓$\frac{x^2}{16}+\frac{y^2}{4}$=1過點(diǎn)P(2,1)作弦且弦被P平分,則此弦所在的直線方程為( 。
A.2x-y-3=0B.2x-y-1=0C.x+2y-1=0D.x+2y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,若$\overrightarrow{a}$與$\overrightarrow$的夾角為45°,則$\overrightarrow{a}$$•\overrightarrow$的值等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={-2,-1,3,4},B={-1,0,3},則A∪B等于( 。
A.{-1,3}B.{-2,-1,0,3,4}C.{-2,-1,0,4}D.{-2,-1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,若a2=b2+c2-$\sqrt{3}$bc,則角A的度數(shù)為( 。
A.30°B.150°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.函數(shù)y=Asin(ωx+ϕ),(A>0,ω>0,0<ϕ<π)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求該函數(shù)的解析式.
(2)當(dāng)$x∈[-\frac{π}{2},\frac{π}{6}]$時(shí),求該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$cos(\frac{π}{2}-α)=\frac{3}{5},α∈({\frac{π}{2},π})$,則$sin({α+\frac{π}{3}})$=$\frac{{3-4\sqrt{3}}}{10}$.

查看答案和解析>>

同步練習(xí)冊答案