如圖,四棱錐S一ABCD中,已知AD∥BC,∠ADC=90°,∠BAD=135°,AD=DC=
2
,SA=SC=SD=2.
(I)求證:AC⊥SD;
(Ⅱ)求二面角A-SB-C的余弦值.
考點(diǎn):二面角的平面角及求法
專題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)取AC的中點(diǎn)O,連接OD,由已知得AC⊥平面SOD,由此能證明AC⊥SD.
(Ⅱ)由題意知OA=OC=OD,SA=SC=SD,從而SO⊥平面ABCD,連接BO,則∠SBO為直線SB與平面ABCD所成的角,由此能求出二面角A-SB-C的余弦值.
解答: (Ⅰ)證明:如圖,取AC的中點(diǎn)O,連接OD,
∵AD=DC,∴AC⊥OD,
又∵SA=SC,∴AC⊥OS,
由OD∩OS=O,得AC⊥平面SOD,
∵SD?平面SOD,∴AC⊥SD.
(Ⅱ)解:由題意知OA=OC=OD,
∵SA=SC=SD,
∴O是點(diǎn)S在平面ABCD上的射影,
故SO⊥平面ABCD,
連接BO,則∠SBO為直線SB與平面ABCD所成的角,
由題意知∠BAC=90°,∠ACB=45°,
∴△ABC為等腰直角三角形,
且AB=AC=2,∴BO=
5
,
在Rt△SBO中,SB=
SO2+BO2
=2
2
,
∴cos∠SBO=
5
2
2
=
10
4
,
∴二面角A-SB-C的余弦值為
10
4
點(diǎn)評(píng):本題考查異面直線垂直的證明,考查二面角的余弦值的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圖一是由三個(gè)邊長(zhǎng)均為2的正三角形和一個(gè)半圓及一個(gè)扇形組成的平面圖形,將其折起恰好圍成如圖二所示的幾何體,在該幾何體中,點(diǎn)O為半圓的圓心,E為BC的中點(diǎn).
(1)求證:BC⊥平面ADE;
(2)求圖二所示幾何體的體積;
(3)求二面角A-BC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱錐P-ABC中,PA,PB,PC兩兩垂直,且PA=2
7
,PB=PC=2
2
,求三棱錐的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
n+2
3
an(n∈N*),a1=
1
3

①求證:數(shù)列{
an
n(n+1)
}為常數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
②設(shè)Tn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,若對(duì)任意的n∈N*,x∈(0,+∞),不等式Tn<x-2lnx+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:若曲線y=f(x)與y=g(x)都和直線y=kx+b相切,且滿足:f(x)≤kx+b≤g(x)或g(x)≤kx+b≤f(x)恒成立,則稱直線y=kx+b為曲線y=f(x)與y=g(x)的“內(nèi)公切線”.已知f(x)=-
1
4
x2,g(x)=ex
(1)試探究曲線y=f(x)與y=g(x)是否存在“內(nèi)公切線”?若存在,請(qǐng)求出內(nèi)公切線的方程;若不存在,請(qǐng)說(shuō)明理由;
(2)g′(x)是函數(shù)g(x)的導(dǎo)設(shè)函數(shù),P(x1,g(x1)),Q(x2,g(x2))是函數(shù)y=g(x)圖象上任意兩點(diǎn),x1<x2,且存在實(shí)數(shù)x3,使得g′(x3)=
g(x2)-g(x1)
x2-x1
,證明:x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩人進(jìn)行乒乓球比賽,各局相互獨(dú)立,約定每局勝者得1分,負(fù)者得0分,如果兩人比賽五局,乙得1分與得2分的概率恰好相等.
(1)求乙在每局中獲勝的概率為多少?
(2)假設(shè)比賽進(jìn)行到有一人比對(duì)方多2分或打滿6局時(shí)停止,用ξ表示比賽停止時(shí)已打局?jǐn)?shù),求ξ的期望Eξ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z是復(fù)數(shù),若z+2i為實(shí)數(shù)(i為虛數(shù)單位),且z(1-2i)為純虛數(shù).
(1)求復(fù)數(shù)z;
(2)若復(fù)數(shù)(z+mi)2在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知長(zhǎng)方體ABCD-A1B1C1D1中,AB=5,AD=5,AA1=3.
(1)求長(zhǎng)方體的對(duì)角線的長(zhǎng);
(2)求長(zhǎng)方體的表面積;
(3)求長(zhǎng)方體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若命題“p且q”為假,且“非p”為假,則命題q的真假為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案