分析 先根據(jù)橢圓的標(biāo)準(zhǔn)方程,求得半焦距c,進(jìn)而根據(jù)橢圓的定義求得|MF1|+|MF2|的值,進(jìn)而利用余弦定理求得|MF1|和|MF2|的關(guān)系式,聯(lián)立方程求得|MF1|•|MF2|,最后根據(jù)三角形面積公式求得三角形的面積.
解答 解:由橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,得a=5,b=4,c=$\sqrt{{a}^{2}-^{2}}$=3.
根據(jù)橢圓定義,有|MF1|+|MF2|=2a=10.
在△F1MF2中,由余弦定理,得到
|F1F2|2=|MF1|2+|MF2|2-2|MF1|•|MF2|•cos∠F1MF2.
即36=|MF1|2+|MF2|2-2|MF1|•|MF2|•cos$\frac{π}{6}$,
36=|MF1|2+|MF2|2-$\sqrt{3}$|MF1|•|MF2|
=(|MF1|+|MF2|)2-(2+$\sqrt{3}$)|MF1|•|MF2|=102-(2+$\sqrt{3}$)|MF1|•|MF2|,
解得|MF1|•|MF2|=64(2-$\sqrt{3}$).
△F1MF2的面積為:S=$\frac{1}{2}$|MF1|•|MF2|sin∠F1MF2
=$\frac{1}{2}$×64(2-$\sqrt{3}$)×sin$\frac{π}{6}$=16(2-$\sqrt{3}$).
點(diǎn)評(píng) 本題主要考查了橢圓的應(yīng)用.特別是利用橢圓的定義解決橢圓的實(shí)際問(wèn)題,同時(shí)考查解三角形的余弦定理和面積公式的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2,3,4} | B. | {1,4,6} | C. | {4,5,7,8} | D. | {1,2,3,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com