20.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5=5,S5=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{2n•an}的前n項(xiàng)和Tn

分析 (1)通過(guò)等差數(shù)列的求和公式S5=$\frac{5({a}_{1}+{a}_{5})}{2}$計(jì)算可知a1=1,進(jìn)而可求出d=$\frac{{a}_{5}-{a}_{1}}{5-1}$,計(jì)算即得結(jié)論;
(2)通過(guò)(1)可知2n•an=n•2n,利用錯(cuò)位相減法計(jì)算即得結(jié)論.

解答 解:(1)依題意,S5=15=$\frac{5({a}_{1}+{a}_{5})}{2}$=$\frac{5({a}_{1}+5)}{2}$,
解得:a1=1,d=$\frac{{a}_{5}-{a}_{1}}{5-1}$=$\frac{5-1}{5-1}$=1,
∴數(shù)列{an}是首項(xiàng)、公差均為1的等差數(shù)列,
∴數(shù)列{an}的通項(xiàng)公式an=n;
(2)由(1)可知2n•an=n•2n,
∴Tn=1•2+2•22+…+n•2n,2Tn=1•22+2•23+…+(n-1)•2n+n•2n+1
錯(cuò)位相減得:-Tn=2+22+23+…+2n-n•2n+1,
∴Tn=n•2n+1-(2+22+23+…+2n)=n•2n+1-$\frac{2(1-{2}^{n})}{1-2}$=2+(n-1)•2n+1

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,利用錯(cuò)位相減法是解決本題的關(guān)鍵,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知定義在R上的函數(shù)y=f(x)滿足以下三個(gè)條件:
①對(duì)于任意的x∈R,都有f(x+4)=f(x);        
②對(duì)于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);
③函數(shù)y=f(x+2)的圖象關(guān)于y軸對(duì)稱   
則下列結(jié)論中正確的是(  )
A.f (4.5)<f (7)<f (6.5)B.f (7)<f (4.5)<f (6.5)C.f (7)<f (6.5)<f (4.5)D.f (4.5)<f (6.5)<f (7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+3,x≤0}\\{-{x}^{2}-2x-3,x>0}\end{array}\right.$如果f(m+1)+f(3-2m)<0,那么實(shí)數(shù)m的取值范圍為(-∞,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知f(x)=lg(2x+2-x),下列命題:①定義域?yàn)镽;②值域?yàn)镽;③在定義域上為偶函數(shù);④在(-∞,0)上為減函數(shù);⑤函數(shù)g(x)=f(x)-2恰有兩個(gè)零點(diǎn).其中正確命題是①③④⑤.(只要填寫(xiě)正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求實(shí)數(shù)k的值.
(2)若f(1)<0,試判斷并證明函數(shù)f(x)的單調(diào)性;
(3)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)在區(qū)間[1,∞)上的最小值為-2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.不等式(x-3)-2>(2x+1)-2的解集為{x|x>$\frac{2}{3}$或x<-4且x≠3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}的各項(xiàng)均為正,Sn為數(shù)列{an}的前n項(xiàng)和,an2+2an=4Sn+3.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{n}}{{3}^{n}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x\\;x≥1}\\{{2}^{x}\\;x<1}\end{array}\right.$的值域?yàn)椋ā 。?table class="qanwser">A.(-∞,0]B.(-∞,2)C.[0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在四面體ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,
(Ⅰ) 求證:AC⊥BD;
(Ⅱ)若平面ABD⊥平面CBD,且BD=$\frac{5}{2}$,求二面角C-AD-B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案