1.如圖,已知三棱柱ABC-A1B1C1中,D是棱BC1上一點(diǎn),且$\overrightarrow{BD}$=2$\overrightarrow{D{C}_{1}}$,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,用$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$表示向量$\overrightarrow{AD}$,則$\overrightarrow{AD}$=$\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$+$\frac{2}{3}\overrightarrow{c}$.

分析 由$\overrightarrow{BD}$=2$\overrightarrow{D{C}_{1}}$,可得$\overrightarrow{BD}$=$\frac{2}{3}$$\overrightarrow{B{C}_{1}}$=$\frac{2}{3}$×$(\overrightarrow{BC}+\overrightarrow{B{B}_{1}})$=$\frac{2}{3}$$(\overrightarrow{B{B}_{1}}+\overrightarrow{AC}-\overrightarrow{AB})$,代入$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$,即可得出.

解答 解:∵$\overrightarrow{BD}$=2$\overrightarrow{D{C}_{1}}$,∴$\overrightarrow{BD}$=$\frac{2}{3}$$\overrightarrow{B{C}_{1}}$=$\frac{2}{3}$×$(\overrightarrow{BC}+\overrightarrow{B{B}_{1}})$=$\frac{2}{3}$$(\overrightarrow{B{B}_{1}}+\overrightarrow{AC}-\overrightarrow{AB})$,
∴$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{a}$+$\frac{2}{3}$($\overrightarrow{c}+\overrightarrow-\overrightarrow{a}$)=$\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$+$\frac{2}{3}\overrightarrow{c}$.
故答案為:=$\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$+$\frac{2}{3}\overrightarrow{c}$.

點(diǎn)評(píng) 本題考查了向量共線定理、平面向量基本定理、向量三角形法則,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B={x|-1<x<n},則m=-1,n=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知α,β都是銳角,且tan(α-β)=$\frac{1}{2},tanβ=\frac{1}{3}$,則α=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示,執(zhí)行程序框圖,輸出結(jié)果( 。
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{11}{12}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合A={1,2,3,4},B={x∈R|1<x≤4},則A∩B=( 。
A.{1,2,3,4}B.{2,4}C.{2,3,4}D.{x|1<x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,1),B(0,4).若直線2x-y+m=0上存在點(diǎn)P,使得PA=$\frac{1}{2}$PB,則實(shí)數(shù)m的取值范圍是-2$\sqrt{5}$≤m≤2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知${∫}_{0}^{2}$ f(x)dx=3,則${∫}_{0}^{2}$[f(x)+6]dx等于( 。
A.9B.12C.15D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=(x-a)ln(ax)(a>0且a≠1)的圖象與x軸交于A(x1,0),B(x2,0)兩點(diǎn).
(1)設(shè)曲線y=f(x)在A,B處的切線的斜率分別為k1,k2,求證:k1+k2<0;
(2)設(shè)x0是f(x)的極值點(diǎn),比較$\sqrt{{x}_{1}{x}_{2}}$,x0,$\frac{{x}_{1}+{x}_{2}}{2}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.sin80°cos40°+cos80°sin40°等于( 。
A.$-\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案