17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{|lgx|,x>0}\\{-{x}^{2}-2x,x≤0}\end{array}\right.$,若函數(shù)y=2[f(x)]2+2bf(x)+1有8個(gè)不同的零點(diǎn),則實(shí)數(shù)b的取值范圍是(-$\frac{3}{2}$,-$\sqrt{2}$).

分析 由題意可得即要求對(duì)應(yīng)于f(x)=某個(gè)常數(shù)k,有2個(gè)不同的k,每一個(gè)常數(shù)可以找到4個(gè)x與之對(duì)應(yīng),就出現(xiàn)了8個(gè)不同實(shí)數(shù)解.故先根據(jù)題意作出f(x)的簡圖,由圖可知,只有滿足條件的k在開區(qū)間(0,1)時(shí)符合題意.再根據(jù)一元二次方程根的分布理論可得b的不等式,可以得出答案.

解答 解:根據(jù)題意作出f(x)的簡圖:

由圖象可得當(dāng)f(x)∈(0,1)時(shí),
函數(shù)有四個(gè)不同零點(diǎn).
若方程2f2(x)+2bf(x)+1=0有8個(gè)不同實(shí)數(shù)解,令k=f(x),
則關(guān)于k的方程2k2+2bk+1=0有兩個(gè)不同的實(shí)數(shù)根k1、k2,且k1和k2均為大于0且小于1的實(shí)數(shù).
即有k1+k2=-b,k1k2=$\frac{1}{2}$.
故:$\left\{\begin{array}{l}{△=4^{2}-8>0}\\{0<{k}_{1}+{k}_{2}<2}\\{{k}_{1}{k}_{2}>0}\\{({k}_{1}-1)({k}_{2}-1)>0}\end{array}\right.$,即 $\left\{\begin{array}{l}{b>\sqrt{2}或b<-\sqrt{2}}\\{0<-b<2}\\{b>-\frac{3}{2}}\end{array}\right.$,
可得-$\frac{3}{2}$<b<-$\sqrt{2}$.
故答案為:(-$\frac{3}{2}$,-$\sqrt{2}$).

點(diǎn)評(píng) 本題考查了函數(shù)的圖象與一元二次方程根的分布的知識(shí),采用數(shù)形結(jié)合的方法解決,使本題變得易于理解.?dāng)?shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)i是虛數(shù)單位,則復(fù)數(shù)$\frac{i+3{i}^{2}}{1-{i}^{3}}$在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知三棱錐ABC-A1B1C1的底面是正三角形,側(cè)面ABB1A1是菱形,且∠A1AB=60°,M是A1B1的中點(diǎn),MB⊥AC.
(1)求證:平面ABB1A1⊥平面ABC;
(2)求二面角M-BB1-C1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知長方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M為DC的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM
(Ⅰ)求證:AD⊥BM
(Ⅱ)若點(diǎn)E是線段DB上的一動(dòng)點(diǎn),問點(diǎn)E在何位置時(shí),二面角E-AM-D的余弦值為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知n階矩陣A滿足A2=A,證明:A=I或detA=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某三棱錐的正視圖和側(cè)視圖如圖所示,則該三棱錐的俯視圖的面積為(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知一幾何體的三視圖如圖所示,則該幾何體的體積為4;表面積為12+3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若f($\frac{1-x}{1+x}$)=$\frac{1-{x}^{2}}{1+{x}^{2}}$,則f(-$\frac{1}{2}$)=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求圖中a、b的值及函數(shù)f(x)的遞減區(qū)間;
(3)若將f(x)的圖象向左平移m(m>0)個(gè)單位后,得到g(x)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱,求m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案