【題目】(文科)已知的橢圓的左、右兩個(gè)焦點(diǎn)分別為,上頂點(diǎn), 是正三角形且周長(zhǎng)為6.
(1)求橢圓的標(biāo)準(zhǔn)方程及離心率;
(2) 為坐標(biāo)原點(diǎn), 是直線上的一個(gè)動(dòng)點(diǎn),求的最小值,并求出此時(shí)點(diǎn)的坐標(biāo).
【答案】(1) , ;(2) , .
【解析】試題分析:(1)根據(jù)橢圓的定義和周長(zhǎng)為,建立關(guān)于的方程組,解之得且,即可得到橢圓的標(biāo)準(zhǔn)方程,用離心率的公式即可得到該橢圓的離心率;(2)設(shè)直線的方程為,求出原點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為,從而得到的最小值為,再由的方程與方程聯(lián)解,即可得到此時(shí)點(diǎn)的坐標(biāo).
試題解析:(1)由題意,
解得.
所以橢圓的標(biāo)準(zhǔn)方程為,離心率.
(2)因?yàn)?/span>是正三角形,可得直線的斜率為,
所以直線的方程為.
設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,則
解得,可得坐標(biāo)為.
因?yàn)?/span>,所以.
所以的最小值,
直線的方程為,
即.
由解得,
所以此時(shí)點(diǎn)的坐標(biāo)為.
綜上所述,可求的的最小值為,此時(shí)點(diǎn)的坐標(biāo)為.
【方法點(diǎn)晴】本題主要考查待定系數(shù)法求橢圓標(biāo)準(zhǔn)方程及曲線過(guò)定點(diǎn)問(wèn)題,屬于難題.解決曲線過(guò)定點(diǎn)問(wèn)題一般有兩種方法:① 探索曲線過(guò)定點(diǎn)時(shí),可設(shè)出曲線方程 ,然后利用條件建立等量關(guān)系進(jìn)行消元,借助于曲線系的思想找出定點(diǎn),或者利用方程恒成立列方程組求出定點(diǎn)坐標(biāo).② 從特殊情況入手,先探求定點(diǎn),再證明與變量無(wú)關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)在人們都注重鍛煉身體,騎車或步行上下班的人越來(lái)越多,某學(xué)校甲、乙兩名教師每天可采用步行、騎車、開(kāi)車三種方式上下班,步行到學(xué)校所用時(shí)間為1小時(shí),騎車到學(xué)校所用時(shí)間為0.5小時(shí),開(kāi)車到學(xué)校所用時(shí)間為0.1小時(shí),甲、乙兩人上下班方式互不影響.設(shè)甲、乙步行的概率分別為、,騎車的概率分別為、.
(1) 求甲、乙兩人到學(xué)校所用時(shí)間相同的概率;
(2) 設(shè)甲、乙兩人到學(xué)校所用時(shí)間和為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心為原點(diǎn),離心率,其中一個(gè)焦點(diǎn)的坐標(biāo)為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),設(shè)動(dòng)點(diǎn)的運(yùn)動(dòng)軌跡為若點(diǎn)滿足: 其中是上的點(diǎn).直線的斜率之積為,試說(shuō)明:是否存在兩個(gè)定點(diǎn),使得為定值?若存在,求的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一架飛機(jī)以600km/h的速度,沿方位角60°的航向從A地出發(fā)向B地飛行,飛行了36min后到達(dá)E地,飛機(jī)由于天氣原因按命令改飛C地,已知AD=600 km,CD=1200km,BC=500km,且∠ADC=30°,∠BCD=113°.問(wèn)收到命令時(shí)飛機(jī)應(yīng)該沿什么航向飛行,此時(shí)E地離C地的距離是多少?(參考數(shù)據(jù):tan37°= )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間與極值;
(2)若,關(guān)于的不等式恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(文科)在下列結(jié)論中①“”為真是“”為真的充分不必要條件;②“ ”為假是“”為真的充分不必要條件;③“ ”為真是“”為假的充分不必要條件;④“ ” 為真是“”為假充分不必要條件.正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了 1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?
(參考:用最小二乘法求線性回歸方程系數(shù)公式 ,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的莖葉圖是甲、乙兩人在4次模擬測(cè)試中的成績(jī),其中一個(gè)數(shù)字被污損,則甲的平均成績(jī)不超過(guò)乙的平均成績(jī)的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底要為平行四邊形, ,
, , 底面, 為上一點(diǎn),且.
(1)證明: ;
(2)求二面角余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com