19.連續(xù)不斷地射擊某一目標(biāo),首次擊中目標(biāo)需要的射擊次數(shù)X是一個(gè)隨機(jī)變量,則X=4表示的試驗(yàn)結(jié)果是在4次射擊中,前3次都沒有擊中目標(biāo),第4次擊中目標(biāo).

分析 X=4表示的試驗(yàn)結(jié)果是在4次射擊中,前3次都沒有擊中目標(biāo),第4次擊中目標(biāo).

解答 解:∵連續(xù)不斷地射擊某一目標(biāo),
首次擊中目標(biāo)需要的射擊次數(shù)X是一個(gè)隨機(jī)變量,
∴X=4表示的試驗(yàn)結(jié)果是在4次射擊中,前3次都沒有擊中目標(biāo),第4次擊中目標(biāo).
故答案為:在4次射擊中,前3次都沒有擊中目標(biāo),第4次擊中目標(biāo).

點(diǎn)評(píng) 本題考查隨機(jī)事件的定義的應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意隨機(jī)事件的概念的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{4x-y+1≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=$\frac{y+1}{x+3}$的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(n)=($\frac{1+i}{1-i}$)n+($\frac{1-i}{1+i}$)n(n∈N*),則集合{f(n)}中元素的個(gè)數(shù)為( 。
A.1B.2C.3D.無數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0),滿足對(duì)任意f(x1)=f(x2)=0.都有|x1-x2|≥$\frac{π}{2}$,把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象,關(guān)于函數(shù)g(x),下列說法正確的是( 。
A.其圖象關(guān)于直線x=-$\frac{π}{4}$對(duì)稱B.函數(shù)g(x)是奇函數(shù)
C.在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函數(shù)D.x∈[$\frac{π}{6}$,$\frac{2π}{3}$]時(shí),函數(shù)g(x)的值域是[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足a1=4,an+1=2an
(1)求數(shù)列{an}的前n項(xiàng)和Sn;
(2)設(shè)等差數(shù)列{bn}滿足b7=3,b15=a4,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.sin10°cos20°+cos10°sin20°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若直線ax-by+2=0(a>0,b>0)被圓x2+y2+4x-4y-1=0所截得的弦長(zhǎng)為6,則$\frac{2}{a}$+$\frac{3}$的最小值為5+2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{x^2}{3}-\frac{y^2}{2}=1$的左焦點(diǎn)為F,點(diǎn)P為雙曲線右支上一點(diǎn),點(diǎn)A滿足$\overrightarrow{AP}•\overrightarrow{AF}=0$,則點(diǎn)A到原點(diǎn)的最近距離為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.觀察下列各式(如圖):

照此規(guī)律,當(dāng)n∈N*時(shí),$1+\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}<$$\frac{2n+1}{n+1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案