【題目】現(xiàn)將甲、乙、丙、丁四個人安排到座位號分別是的四個座位上,他們分別有以下要求,

甲:我不坐座位號為的座位;

乙:我不坐座位號為的座位;

丙:我的要求和乙一樣;

。喝绻也蛔惶枮的座位,我就不坐座位號為的座位.

那么坐在座位號為的座位上的是( )

A. B. C. D.

【答案】C

【解析】

對甲分別坐座位號為3或4分類推理即可判斷。

當(dāng)甲坐座位號為3時,

因為乙不坐座位號為1和4的座位

所以乙只能坐座位號為2,這時只剩下座位號為1和4

又丙的要求和乙一樣,矛盾,故甲不能坐座位號3.

當(dāng)甲坐座位號為4時,

因為乙不坐座位號為1和4的座位,丙的要求和乙一樣:

所以丁只能坐座位號1,

又如果乙不坐座位號為2的座位,丁就不坐座位號為1的座位.

所以乙只能坐座位號2,這時只剩下座位號3給丙。

所以坐在座位號為3的座位上的是丙.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)),上的最大值為.

(1)求實數(shù)的值;

(2)判斷函數(shù)內(nèi)的極值點個數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;

(2)若直線與曲線有兩個不同交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右頂點為,上頂點為.已知橢圓的離心率為,.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線與橢圓交于兩點,且點在第二象限.延長線交于點,若的面積是面積的3倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體中, , 為棱上一點,

1,求異面直線所成角的正切值;

2,求證平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年央視大型文化節(jié)目《經(jīng)典詠流傳》的熱播,在全民中掀起了誦讀詩詞的熱潮,節(jié)目組為熱心觀眾給以獎勵,要從名觀眾中抽取名幸運觀眾.先用簡單隨機抽樣從人中剔除人,剩下的人再按系統(tǒng)抽樣方法抽取人,則在人中,每個人被抽取的可能性( )

A. 均不相等B. 都相等,且為

C. 不全相等D. 都相等,且為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其圖象相鄰兩條對稱軸之間的距離為,將該函數(shù)的圖象向左平移個單位后,得到的圖象對應(yīng)的函數(shù)為偶函數(shù).下列判斷正確的是( )

A. 函數(shù)的最小正周期為

B. 函數(shù)的圖象關(guān)于點對稱

C. 函數(shù)的圖象關(guān)于直線對稱

D. 函數(shù)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某油庫的容量為31萬噸,油庫已儲存石油10萬噸.計劃從20201月起每月初先購進(jìn)石油萬噸,然后再調(diào)出一部分石油來滿足區(qū)域內(nèi)和區(qū)域外的需求.若區(qū)域內(nèi)每月用石油1萬噸,區(qū)域外前個月的需求量(萬噸)與的函數(shù)關(guān)系為.已知前4個月區(qū)域外的需求量為15萬噸.

1)試寫出200年第個月石油調(diào)出后,油庫內(nèi)儲油量(萬噸)的函數(shù)表達(dá)式;

2)要使庫中的石油在2020年前10個月內(nèi)每個月都不超過油庫的容量,又能滿足區(qū)域內(nèi)和區(qū)域外的需求,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,側(cè)棱底面,,

1)求二面角的正弦值;

2)點是線段的中點,點為線段上點,若直線與平面所成角的正弦值為,求線段的長.

查看答案和解析>>

同步練習(xí)冊答案