5.某幾何體的正視圖與俯視圖如圖所示,若俯視圖中的多邊形為正六邊形,則該幾何體的側(cè)視圖的面積為( 。
A.$\frac{15}{2}$B.6+$\sqrt{3}$C.$\frac{3}{2}$+3$\sqrt{3}$D.4$\sqrt{3}$

分析 根據(jù)幾何體的三視圖,得出該幾何體上部為正六棱錐,下部為圓柱,結(jié)合數(shù)據(jù)特征求出側(cè)視圖的面積即可.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體的上部為正六棱錐,下部為圓柱,
∴側(cè)視圖如圖所示;
它的面積為2×3+$\frac{1}{2}$×2×sin$\frac{π}{3}$×$\sqrt{3}$=$\frac{15}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了空間幾何體的三視圖的應(yīng)用問題,也考查了面積公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.(1-x)3(1-$\sqrt{x}$)4的展開式中x2的系數(shù)是-14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{4}$,sin$\frac{3x}{4}$),$\overrightarrow$=(cos($\frac{x}{4}$+$\frac{π}{3}$),-sin($\frac{x}{4}$+$\frac{π}{3}$));令f(x)=($\overrightarrow{a}+\overrightarrow$)2
(1)求f(x)解析式及單調(diào)遞增區(qū)間;
(2)若f(x)=$\frac{5}{2}$,求sin(x-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,設(shè)平面向量$\overrightarrow{{e}_{1}}$=(cosC,c-2b),$\overrightarrow{{e}_{2}}$=(2a,1)且$\overrightarrow{{e}_{1}}⊥\overrightarrow{{e}_{2}}$
(1)求角A
(2)若a=2,求△ABC的周長(zhǎng)L的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ex-ax+a,其中a∈R,e為自然數(shù)的底數(shù)
(1)討論函數(shù)f(x)的單調(diào)區(qū)間,并寫出相應(yīng)的單調(diào)區(qū)間
(2)設(shè)b∈R,若函數(shù)f(x)≥b對(duì)任意x∈R都成立,則當(dāng)a≥0時(shí),求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求函數(shù)f(x)=x2-4|x|+3的單調(diào)區(qū)間并作出函數(shù)圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.計(jì)算:(3+tan30°tan40°+tan40°tan50°+tan50°tan60°)•tan10°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.化簡(jiǎn):
(1)3$\sqrt{15}$sinx+3$\sqrt{5}$cosx;
(2)$\frac{3}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx;
(3)$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$;
(4)$\frac{\sqrt{2}}{4}$sin($\frac{π}{4}$-x)+$\frac{\sqrt{6}}{4}$cos($\frac{π}{4}$-x);
(5)sin164°sin224°+sin254°sin314°;
(6)sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ);
(7)sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β);
(8)tan$\frac{5π}{4}$+tan$\frac{5π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一群老朋友聚會(huì),見面時(shí)每?jī)扇硕嘉帐?次,一共要握手105次,那么參加聚會(huì)有15人.

查看答案和解析>>

同步練習(xí)冊(cè)答案