12.在平面直角坐標(biāo)系xOy中,M為不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{x≤3}\end{array}\right.$所表示的區(qū)域上一動(dòng)點(diǎn),則直線OM斜率的最小值為( 。
A.0B.1C.$-\frac{2}{3}$D.$\frac{4}{3}$

分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),利用斜率的幾何意義即可得到結(jié)論.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由圖象可知當(dāng)點(diǎn)M位于A時(shí),直線的斜率最小,
由$\left\{\begin{array}{l}{x=3}\\{x+y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$,
即A(3,-2),
∴OM的斜率k=-$\frac{2}{3}$,
故直線OM斜率的最小值為$-\frac{2}{3}$
故選:C.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合直線斜率的定義,是解決本題的關(guān)鍵.利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.我縣某種蔬菜從二月一日起開始上市,通過市場調(diào)查,得到西紅柿種植成本Q(單位:元/102kg)與上市時(shí)間t(單位:天)的數(shù)據(jù)如下表:
時(shí)間t50110250
種植成本Q150108150
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述西紅柿種植成本Q與上市時(shí)間t的變化關(guān)系.Q=at+b,Q=at2+bt+c,Q=a•bt,Q=a•logbt.
(2)利用你選取的函數(shù),求西紅柿種植成本最低時(shí)的上市天數(shù)及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.給定兩個(gè)命題P:對(duì)任意實(shí)數(shù)x都有ax2+ax+1>0恒成立;Q:關(guān)于x的方程x2-x+a=0有實(shí)數(shù)根;
(1)“a=0”是P的什么條件?
(2)如果P與Q中有且僅有一個(gè)為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.半徑為2,圓心角等于$\frac{2π}{5}$的扇形的面積是$\frac{4π}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$sinα=\frac{3}{5}$,則$sin(\frac{π}{2}+2α)$=( 。
A.$-\frac{12}{25}$B.$\frac{7}{25}$C.$\frac{12}{25}$D.$-\frac{7}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.方程x2+y2-2x+4y+6=0表示的圖形為( 。
A.一個(gè)點(diǎn)B.一個(gè)圓C.一條直線D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.執(zhí)行如圖所示的程序框圖,若輸入數(shù)據(jù)n=5,a1=-2,a2=-2.6,a3=3.2,a4=2.5,a5=1.4,則輸出的結(jié)果為0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出下面的程序框圖,則輸出的結(jié)果為(  )
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列說法中所有正確的是①③④
①“p∧q”為真的一個(gè)必要不充分條件是“p∨q”為真
②若p:$\frac{1}{x}$>0,則¬p:$\frac{1}{x}$≤0
③若實(shí)數(shù)a,b滿足$\sqrt{a}$+$\sqrt$=1,則$\frac{1}{2}$≤a+b≤1
④數(shù)列{$\frac{{2}^{n}}{({2}^{n}+1)^{2}}$}(n∈N*)的最大項(xiàng)為$\frac{2}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案