【題目】已知橢圓的長軸長為4,且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)直線的斜率為,且與橢圓相交于,兩點(diǎn)(異于點(diǎn)),過作的角平分線交橢圓于另一點(diǎn).證明:直線與坐標(biāo)軸平行.
【答案】(1);(2)證明見解析
【解析】
(1)根據(jù)橢圓的性質(zhì),求解即可;
(2)因?yàn)?/span>平分,欲證與坐標(biāo)軸平行,即證明直線的方程為或,只需證,斜率都存在,且滿足即可.將直線的方程與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理求解即可.
(1)解:,將代入橢圓方程,得,
解得,故橢圓的方程為.
(2)證明:∵平分
欲證與坐標(biāo)軸平行,即證明直線的方程為或
只需證,斜率都存在,且滿足即可.
當(dāng)或斜率不存在時(shí),即點(diǎn)或點(diǎn)為,
經(jīng)檢驗(yàn),此時(shí)直線與橢圓相切,不滿足題意,故,斜率都存在.
設(shè)直線:,,,
聯(lián)立,
,∴,
由韋達(dá)定理得,,
得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)經(jīng)過點(diǎn)的直線與拋物線相交于、兩點(diǎn),經(jīng)過點(diǎn)的直線與拋物線相切于點(diǎn).
(1)當(dāng)時(shí),求的取值范圍;
(2)問是否存在直線,使得成立,若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的最大值為.
(1)求的值;
(2)試推斷方程是否有實(shí)數(shù)解?若有實(shí)數(shù)解,請求出它的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國改革開放以來經(jīng)濟(jì)發(fā)展迅猛,某一線城市的城鎮(zhèn)居民2012~2018年人均可支配月收入散點(diǎn)圖如下(年份均用末位數(shù)字減1表示).
(1)由散點(diǎn)圖可知,人均可支配月收入y(萬元)與年份x之間具有較強(qiáng)的線性相關(guān)關(guān)系,試求y關(guān)于x的回歸方程(系數(shù)精確到0.001),依此相關(guān)關(guān)系預(yù)測2019年該城市人均可支配月收入;
(2)在2014~2018年的五個(gè)年份中隨機(jī)抽取兩個(gè)數(shù)據(jù)作樣本分析,求所取的兩個(gè)數(shù)據(jù)中,人均可支配月收入恰好有一個(gè)超過1萬元的概率.
注:,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四棱錐中,底面為等腰梯形,,,,,點(diǎn)在底面的投影恰好為與的交點(diǎn),.
(1)證明:;
(2)若為的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】概率論起源于博弈游戲.17世紀(jì),曾有一個(gè)“賭金分配“的問題:博弈水平相當(dāng)?shù)募、乙兩人進(jìn)行博弈游戲,每局比賽都能分出勝負(fù),沒有平局.雙方約定,各出賭金48枚金幣,先贏3局者可獲得全部賭金;但比賽中途因故終止了,此時(shí)甲贏了2局,乙贏了1局.向這96枚金幣的賭金該如何分配?數(shù)學(xué)家費(fèi)馬和帕斯卡都用了現(xiàn)在稱之為“概率“的知識,合理地給出了賭金分配方案.該分配方案是( )
A.甲48枚,乙48枚B.甲64枚,乙32枚
C.甲72枚,乙24枚D.甲80枚,乙16枚
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每條小線段重復(fù)上述步驟,得到16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”,…,如此進(jìn)行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度達(dá)到初始線段的1000倍,則至少需要通過構(gòu)造的次數(shù)是( ).(取,)
A.16B.17C.24D.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐,,,在底面上的投影在上.
(1)證明.
(2)為棱上一點(diǎn),若與面所成的角和與面所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中, , 分別為, 的中點(diǎn),為的中點(diǎn),,.將沿折起到的位置,使得平面平面,如圖2.
(1)求證:;
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com