分析 (1)由條件利用排列數(shù)、組合數(shù)的計(jì)算公式,求得n的值.
(2)在所給的二項(xiàng)式中,令x=0求得a0=1,再令x=1,可得 a0+a1+a2+a3+…+an的值,從而求得x=1,可得a1+a2+a3+…+an的值.
解答 解:(1)由An4=24Cn6,可得$\frac{n!}{(n-4)!}$=24•$\frac{n!}{(n-6)!•6!}$,(n-4)(n-5)=5×6,
求得n=10或n=-1(舍去),故n=10.
(2)在(1-2x)n=a0+a1x+a2x2+a3x3+…+anxn中,
令x=0,可得a0=1;
再令x=1,可得 a0+a1+a2+a3+…+an=a0+a1+a2+a3+…+a10=1,
∴a1+a2+a3+…+an的=a1+a2+a3+…+a10=0.
點(diǎn)評(píng) 本題主要考查排列數(shù)、組合數(shù)的計(jì)算公式,二項(xiàng)式定理的應(yīng)用,屬于給變量賦值問題,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 既不充分也不必要條件 | D. | 充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ②③ | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | -3 | C. | $\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com