19.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{a}$•$\overrightarrow$=0,|$\overrightarrow{a}$+$\overrightarrow$|=5$\sqrt{2}$,則|$\overrightarrow$|=3$\sqrt{5}$.

分析 對|$\overrightarrow{a}$+$\overrightarrow$|=5$\sqrt{2}$兩邊平方,解方程即可.

解答 解:${\overrightarrow{a}}^{2}$=5,∵|$\overrightarrow{a}$+$\overrightarrow$|=5$\sqrt{2}$,∴${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}•\overrightarrow$+${\overrightarrow}^{2}$=50,
即5+${\overrightarrow}^{2}$=50,∴${\overrightarrow}^{2}$=45.
∴|$\overrightarrow$|=$\sqrt{45}$=3$\sqrt{5}$.
故答案為3$\sqrt{5}$.

點評 本題考查了平面向量的數(shù)量積運算,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.設(shè)實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+3y-5≥0}\\{x+y≤7}\\{x-2≥0}\\{\;}\end{array}\right.$,則$\frac{y}{x}$的最大值是$\frac{5}{2}$,x+2y的最大值是12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合A={x|y=$\sqrt{x+1}$},B={y|y<1},則A∩B=( 。
A.(-1,1)B.[-1,1]C.[-1,1)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)是定義在D上的函數(shù),若f(x)滿足:(1)對任意x∈D及任意正實數(shù)t,若x+t∈D,都有f(x+t)≥f(x);(2)存在正實數(shù)M,使得|f(x)|≤M,則稱f(x)為“單限行函數(shù)”,滿足|f(x)|≤M的最小正數(shù)M叫f(x)的“單限峰值”給出下列結(jié)論:
①f(x)=2016(x∈[-1,2])是“單限行函數(shù)”;
②f(x)=xsinx+cosx(x∈[0,$\frac{π}{2}$])是“單限行函數(shù)”,且“單限峰值”為1;
③若f(x)=x3-12x(x∈[m,m+2])是“單限行函數(shù)”,則-4<m<2;
④f(x)是定義在D上的“單限行函數(shù)”,若f(x1)=f(x2),則x1=x2
其中正確結(jié)論的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設(shè)直線l的方程為(a+1)x+y-2=0,若l經(jīng)過第一象限,則a的取值范圍是(-∞,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.求經(jīng)過三點A(1,-1)、B(1,4)、C(4,2)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在半徑為R的圓形鐵皮上截取一塊矩形,并將其卷成一個圓柱,求圓柱體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知正方形ABCD的對角線AC與BD相交于E點,將△ACD沿對角線折起,使得平面ABC⊥平面ADC(如圖),則下列命題中正確的是( 。
A.直線AB⊥直線CD,且直線AC⊥直線BD
B.直線AB⊥平面BCD,且直線AC⊥平面BDE
C.平面ABC⊥平面BDE,且平面ACD⊥BDE
D.平面ABD⊥平面BCD,且平面ACD⊥平面BDE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.冪函數(shù)y=f(x)的圖象經(jīng)過點(2,4),則f(x)的解析式為( 。
A.f(x)=2xB.f(x)=x2C.f(x)=2xD.f(x)=log2x+3

查看答案和解析>>

同步練習冊答案