【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1 , CD的中點,求證:平面ADE⊥平面A1FD1

【答案】證明:因為ABCD﹣A1B1C1D1是正方體,

所以AD⊥平面DCC1D1,

又D1F平面DCC1D1,所以AD⊥D1F,

取AB中點G,

連接A1G、FG,因為F為CD中點,

所以FG AD A1D1,所以A1G∥D1F,

因為E是BB1中點,所以Rt△A1AG≌Rt△ABE,

所以∠AA1G=∠HAG,∠AHA1=90°,

即A1G⊥AE,所以D1F⊥AE,因為AD∩AE=A,

所以D1F⊥平面ADE,

所以D1F平面A1FD1

所以平面A1FD1⊥平面ADE.


【解析】由已知得AD⊥平面DCC1D1,從而AD⊥D1F,取AB中點G,由已知條件推導(dǎo)出A1G⊥AE,從而D1F⊥AE,進(jìn)而D1F⊥平面ADE,由此能證明平面A1FD1⊥平面ADE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2 , 過右焦點F2且與x軸垂直的直線與雙曲線兩條漸近線分別交于A,B兩點,若△ABF1為等腰直角三角形,且|AB|=4 ,P(x,y)在雙曲線上,M( , ),則|PM|+|PF2|的最小值為(
A. ﹣1
B.2
C.2 ﹣2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知( +3x2n的展開式中,各項系數(shù)的和與其各項二項式系數(shù)的和之比為32.
(1)求n;
(2)求展開式中二項式系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖南)如下圖,直三棱柱ABCA1B1C1的底面是邊長為2的正三角形,EF分別是BC、CC1的中點.

(1)證明:平面AEF⊥平面B1BCC1;

(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐FAEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實數(shù)x、y滿足2x+y=9.
(1)若|8﹣y|≤x+3,求x的取值范圍;
(2)若x>0,y>0,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)z1 , z2是復(fù)數(shù),則下列命題中的假命題是(
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1 =z2
D.若|z1|=|z2|,則z12=z22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,內(nèi)角A,B,C成等差數(shù)列,其對邊a,b,c滿足2b2=3ac,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,若a2+2,a4+4,a6+6構(gòu)成等比數(shù)列,這數(shù)列{an}的公差d等于(
A.1
B.﹣1
C.2
D.﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】活水圍網(wǎng)養(yǎng)魚技術(shù)具有養(yǎng)密度高、經(jīng)濟(jì)效益好的特點研究表明:活水圍網(wǎng)養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù)當(dāng)不超過4(尾/立方米)時,的值為(千克/年);當(dāng)時,的一次函數(shù);當(dāng)達(dá)到(尾/立方米)時,因缺氧等原因,的值為(千克/年)

(1)當(dāng)時,求函數(shù)的表達(dá)式;

(2)當(dāng)養(yǎng)殖密度為多大時,魚的年生長量(單位:千克/立方米)可以達(dá)到最大,并求出最大值

查看答案和解析>>

同步練習(xí)冊答案