13.已知圓的圓心為(1,2)和圓上的一點為(-2,6),求圓的標(biāo)準方程.

分析 根據(jù)題意,可設(shè)所求圓的方程為(x-1)2+(y-2)2=r2,利用該圓過點P(-2,6)可求得r2,從而可得這個圓的標(biāo)準方程.

解答 解:依題意可設(shè)所求圓的方程為(x-1)2+(y-2)2=r2
∵點P(-2,6)在圓上,∴r2=(-2-1)2+(6-2)2=25.
∴所求的圓的標(biāo)準方程是(x-1)2+(y-2)2=25.

點評 本題考查圓的標(biāo)準方程,設(shè)出圓的標(biāo)準方程后,求其半徑是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知實數(shù)x,y滿足可行域$D:\left\{\begin{array}{l}x+2y-4≤0\\ 3x-2y+6≥0\\ y≥0\end{array}\right.$,曲線C:|x|+|y|-a=0恰好平分可行域D的面積,則a的值為( 。
A.2B.$\frac{{3\sqrt{2}}}{2}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{3\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an}的公差d≠0,a2=3,且a1、a3、a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\left\{{\begin{array}{l}{{2^{a_n}},}&{n為奇數(shù)}\\{\frac{2}{3}{a_n},}&{n為偶數(shù)}\end{array}}\right.$,數(shù)列{bn}的前n項和為Sn,求S16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示的三角形數(shù)陣教“牛頓調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個數(shù)且兩端的數(shù)均為$\frac{1}{n}({n≥2})$,每個數(shù)是它下一行左右相鄰兩數(shù)的和,如圖

則(1)第6行第2個數(shù)(從左到右)為$\frac{1}{30}$;
(2)第n行第3個數(shù)(從左到右)為$\frac{1}{n(n-1)(n-2)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.分類變量x和y的列聯(lián)表如下,則( 。
y1y2總計
x1aba+b
x2cdc+d
總計a+cb+da+b+c+d
A.ad-bc越小,說明x與y的關(guān)系越弱B.ad-bc越大,說明x與y的關(guān)系越弱
C.(ad-bc)2越大,說明x與y的關(guān)系越強D.(ad-bc)2越小,說明x與y的關(guān)系越強

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的長軸長為4,焦距為2.
(Ⅰ) 求C的方程;
(Ⅱ) 過點P(0,3)的直線m與軌跡C交于A,B兩點.若A是PB的中點,求直線m的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l過點P(2,3),
(1)若直線l在x軸、y軸上的截距之和等于0,求直線l的方程;
(2)若直線l與兩條坐標(biāo)軸在第一象限所圍成的三角形的面積為16,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}-x-2,x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$的零點個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=x3+3x2+2的單調(diào)遞減區(qū)間為( 。
A.(-2,+∞)B.(-∞,2)C.(-2,0)D.(0,2)

查看答案和解析>>

同步練習(xí)冊答案