分析 (Ⅰ)連接AC交BD于點(diǎn)O,連接OE.然后利用三角形中位線的性質(zhì)可得OE∥SA,再由線面平行的判定定理證得SA∥平面BDE;
(Ⅱ)由SD=DC,E是SC的中點(diǎn)可得DE⊥SC,再由面面垂直的判定和性質(zhì)得到BC⊥平面SDC,從而得到BC⊥DE,進(jìn)一步得到SB⊥DE,結(jié)合已知EF⊥SB,由線面垂直的判定得結(jié)論;
(Ⅲ)由(Ⅱ)△DEF為直角三角形,通過解三角形求得兩直角邊長,再求出高BF,結(jié)合VE-BFD=VB-DEF求得三棱錐E-BFD的體積.
解答 (Ⅰ)證明:如圖,
連接AC交BD于點(diǎn)O,連接OE.
∵點(diǎn)O、E分別為AC、SC的中點(diǎn),
∴OE∥SA,又OE?平面BDE,SA?平面BDE,
∴SA∥平面BDE;
(Ⅱ)證明:∵SD=DC,E是SC的中點(diǎn),∴DE⊥SC,
又SD⊥底面ABCD,∴平面SDC⊥平面ABCD,
∵底面ABCD是正方形,∴BC⊥平面SDC,
∴BC⊥DE,
又SC∩BC=C,∴DE⊥平面SBC,
又SB?平面SBC,∴SB⊥DE,
又EF⊥SB,
EF∩ED=E,
∴SB⊥平面EFD;
(Ⅲ)解:由(Ⅱ)知:△DEF為直角三角形,
∵SD=DC=2,E為SC中點(diǎn),∴DE=$\sqrt{2}$,
Rt△SFE∽Rt△SCB,∴EF=$\frac{SE}{SB}•BC$,
$SE=\sqrt{2}$,$SB=\sqrt{{2}^{2}+(2\sqrt{2})^{2}}=2\sqrt{3}$,
∴$EF=\frac{\sqrt{2}}{2\sqrt{3}}×2=\frac{\sqrt{6}}{3}$.
∴${S}_{△DEF}=\frac{1}{2}×\sqrt{2}×\frac{\sqrt{6}}{3}=\frac{\sqrt{3}}{3}$,
$SF=\sqrt{S{E}^{2}-E{F}^{2}}=\sqrt{(\sqrt{2})^{2}-(\frac{\sqrt{6}}{3})^{2}}=\frac{\sqrt{3}}{3}$,
∴$BF=SB-SF=2\sqrt{3}-\frac{\sqrt{3}}{3}=\frac{5\sqrt{3}}{3}$,
∴${V}_{E-BFD}={V}_{B-DEF}=\frac{1}{3}×\frac{\sqrt{3}}{3}×\frac{5\sqrt{3}}{3}=\frac{5}{9}$.
點(diǎn)評 本小題主要考查空間線面關(guān)系、幾何體的體積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com