分析 (1)由三角函數(shù)中的恒等變換應(yīng)用化簡(jiǎn)函數(shù)解析式可得f(x)=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$+a,由2ω•$\frac{π}{6}$+$\frac{π}{3}$=$\frac{π}{2}$即可解得ω的值.
(2)由x∈[0,$\frac{π}{2}$]時(shí),可得x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{5π}{6}$],由g(x)=sin(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$與函數(shù)y=-a的圖象有兩個(gè)交點(diǎn),即可求得a的取值范圍.
解答 解:(1)f(x)=$\frac{\sqrt{3}}{2}$cos2ωx+$\frac{1}{2}$sin2ωx+$\frac{\sqrt{3}}{2}$+a….(2分)
=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$+a…4 分
依題意得2ω•$\frac{π}{6}$+$\frac{π}{3}$=$\frac{π}{2}$解得ω=$\frac{1}{2}$….(6分)
(2)由(1)知f(x)=sin(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$+a
又當(dāng)x∈[0,$\frac{π}{2}$]時(shí),設(shè)x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{5π}{6}$]…(8分)
f(x)=0在[0,$\frac{π}{2}$]上有兩個(gè)實(shí)數(shù)解,即函數(shù)g(x)=sin(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$與函數(shù)y=-a的圖象有兩個(gè)交點(diǎn).…(11分)
由函數(shù)g(x)的圖象得a的取值范圍是(-1-$\frac{\sqrt{3}}{2}$,-$\sqrt{3}$]…(14分)
點(diǎn)評(píng) 本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象和性質(zhì),屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | ||
C. | 等腰或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 三點(diǎn)確定一個(gè)平面 | |
B. | 四邊形一定是平面圖形 | |
C. | 梯形一定是平面圖形 | |
D. | 兩條直線沒(méi)有公共點(diǎn),則這兩條直線平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com