5.函數(shù)y=cos(2x+φ)(-π≤φ≤π)的圖象向右平移$\frac{π}{2}$個單位后,與函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象重合,則|φ|=$\frac{π}{6}$.

分析 由條件利用誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得φ的值,可得|φ|的值.

解答 解:函數(shù)y=cos(2x+φ)(-π≤φ≤π)的圖象向右平移$\frac{π}{2}$個單位后,
得到y(tǒng)=cos[2(x-$\frac{π}{2}$)+φ]=cos(2x+φ-π)=-cos(2x+φ)=sin(2x+φ+$\frac{π}{2}$) 的圖象,
再根據(jù)所得圖象與函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象重合,可得$\frac{π}{2}$+φ=$\frac{π}{3}$+2kπ,k∈Z,
整理得:φ=-$\frac{π}{6}$+2kπ,k∈Z,而-π≤φ≤π,
求得φ=-$\frac{π}{6}$,|φ|=$\frac{π}{6}$,
故答案為:$\frac{π}{6}$.

點評 本題主要考查誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$\overrightarrow a=(\sqrt{3}sinx,\;m+cosx)$,$\overrightarrow b=(cosx,-m+cosx)$,且$f(x)=\vec a•\vec b$.
(1)求函數(shù)f(x)的解析式;并求其最小正周期和對稱中心.
(2)當$x∈[{-\frac{π}{6},\frac{π}{3}}]$時,f(x)的最小值是-4,求此時函數(shù)f(x)的最大值,并求出相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.橢圓中心在原點,焦點在x軸上,若存在過橢圓左焦點的直線L交橢圓于P、Q兩點,使得OP⊥OQ,則橢圓離心率的取值范圍為$[\frac{\sqrt{5}-1}{2},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2cos($\frac{π}{3}$-2x)
(1)若f(x)=1,x∈[-$\frac{π}{6}$,$\frac{π}{4}$],求x的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知角α終邊上一點P(m,1),cosα=-$\frac{1}{3}$.
(1)求實數(shù)m的值;
(2)求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.24•6-2+(-2014)0+${9}^{-\frac{1}{2}}$=(  )
A.$\frac{4}{3}$B.$\frac{4}{9}$C.$\frac{16}{9}$D.$\frac{26}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=2sin(2x-$\frac{π}{3}$)的圖象與直線y=a在y軸右側(cè)從左到右第n個交點的橫坐標為an,且數(shù)列{an}是等差數(shù)列,則a的取值集合為{0,2,-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.要得到函數(shù)y=cosx的圖象,只需將函數(shù)y=sin(x-$\frac{π}{3}$)的圖象(  )
A.向左平移$\frac{π}{6}$B.向右平移$\frac{π}{3}$C.向左平移$\frac{5π}{6}$D.向右平移$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若sinα+2cosα=$\sqrt{5}$,則sinα的值為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

同步練習(xí)冊答案