14.要得到函數(shù)y=cosx的圖象,只需將函數(shù)y=sin(x-$\frac{π}{3}$)的圖象(  )
A.向左平移$\frac{π}{6}$B.向右平移$\frac{π}{3}$C.向左平移$\frac{5π}{6}$D.向右平移$\frac{2π}{3}$

分析 由條件利用誘導(dǎo)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將函數(shù)y=sin(x-$\frac{π}{3}$)的圖象向左平移$\frac{5π}{6}$,可得y=sin(x+$\frac{5π}{6}$-$\frac{π}{3}$)=cosx的圖象,
故選:C.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個(gè)三角函數(shù)的名稱,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=x-ln|x|的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)y=cos(2x+φ)(-π≤φ≤π)的圖象向右平移$\frac{π}{2}$個(gè)單位后,與函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象重合,則|φ|=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知定義在R上奇函數(shù)f(x)滿足f(x+2)=-f(x),且x∈(0,1]時(shí),f(x)=2x,求值:
(1)f(98)=0;
(2)f($\frac{17}{2}$)=$\sqrt{2}$;
(3)f($\frac{100}{3}$)=$\root{3}{4}$;
(4)f(log218)=$\frac{9}{4}$;
(5)f(2015)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)?x∈[-1,1],不等式x$\sqrt{3a-{x}^{2}}$≤$\frac{1}{2}$都成立,則實(shí)數(shù)a的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.化簡(jiǎn):$\frac{1}{co{s}^{2}α\sqrt{1+ta{n}^{2}α}}$-$\sqrt{\frac{1+sinα}{1-sinα}}$(α為第二象限角)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知n∈N*,設(shè)函數(shù)fn(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+…+(-1)n•$\frac{{x}^{n}}{n}$(x∈R).函數(shù)φ(x)=f3(x)+ax2的圖象在點(diǎn)B(1,φ(1))處的切線的斜率為1.
(1)求a的值.
(2)求z的取值范圍,使不等式φ(x)≤z對(duì)于任意x∈[0,2]恒成立;
(3)證明:存在無(wú)數(shù)個(gè)n∈N*,對(duì)任意給定的兩個(gè)不同的x1,x2必有fn(x1)=fn(x2)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知點(diǎn)A,B分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)與上頂點(diǎn).若直線AB被圓x2+y2=a2截得的弦長(zhǎng)為2b,記橢圓的離心率為e,則e2=$\frac{3-\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C的焦點(diǎn)是F1(0,4),F(xiàn)2(0,-4),離心率是$\frac{2}{3}$
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上一點(diǎn),若△PF1F2是直角三角形,求△PF1F2的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案