19.已知F1,F(xiàn)2分別為雙曲線$C:\frac{x^2}{4}-\frac{y^2}{5}=1$的左、右焦點(diǎn),P為C右支上一點(diǎn),且|PF1|=2|PF2|,則△PF1F2的面積為( 。
A.$\sqrt{15}$B.$\frac{{3\sqrt{15}}}{8}$C.$2\sqrt{15}$D.$3\sqrt{15}$

分析 先由雙曲線的方程求出|F1F2|=6,再由|PF1|=2|PF2|,求出|PF1|,|PF2|,由此能求出△PF1F2的面積.

解答 解:雙曲線$C:\frac{x^2}{4}-\frac{y^2}{5}=1$的兩個焦點(diǎn)F1(-3,0),F(xiàn)2(3,0),|F1F2|=6,a=2,
由|PF1|=2|PF2|,設(shè)|PF2|=x,則|PF1|=2x,
由雙曲線的性質(zhì)知,2x-x=4,解得x=4.
∴|PF1|=8,|PF2|=4,
∵|F1F2|=6,∴p=$\frac{4+6+8}{2}$=9,
∴△PF1F2的面積S=$\sqrt{9(9-4)(9-6)(9-8)}$=3$\sqrt{15}$.
故選:D.

點(diǎn)評 本題考查雙曲線的性質(zhì)和應(yīng)用,考查三角形面積的計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一個焦點(diǎn),拋物線與雙曲線交點(diǎn)為$P({\frac{3}{2},\sqrt{6}})$,求拋物線方程和雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.△ABC中,A(0,1),AB邊上的高CD所在直線的方程為x+2y-4=0,AC邊上的中線BE所在直線的方程為2x+y-3=0.
(1)求直線AB的方程,并把它化為一般式;
(2)求直線BC的方程,并把它化為一般式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若方程$\frac{x^2}{k-2}+\frac{y^2}{10-k}=1$表示雙曲線,則實(shí)數(shù)k的取值范圍是( 。
A.2<k<10B.k>10C.k<2或k>10D.以上答案均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在等差數(shù)列{an}中,已知a4+a8=16,則a2+a6+a10=(  )
A.12B.16C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.給出下列四個結(jié)論:
①若a,b∈R,則a2+ab+b2≥0
②“若tanα=1,則$α=\frac{3π}{4}$”的逆命題;
③“若x+y≠2,則x≠1或y≠1”的否命題;
④“若${({{x_0}-a})^2}+{({{y_0}-b})^2}=1$,則點(diǎn)(x0,y0)在圓(x-a)2+(y-b)2=1內(nèi)”的否命題,
其中正確的是①.(只填正確的結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列各小題中,p是q的充分不必要條件的是( 。
①p:m<-2或m>6,q:y=x2+mx+m+3有兩個零點(diǎn);
②$p:\frac{{f({-x})}}{f(x)}=1$,q:y=f(x)是偶函數(shù);
③p:cosα=cosβ,q:tanα=tanβ;
④p:A∩B=A,q:(∁UB)⊆(∁UA)
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow a$、$\vec b$滿足$|\overrightarrow a|=1,|\overrightarrow b|=2$,它們的夾角為60°,那么$|{\overrightarrow a+\vec b}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{-x,x<0}\end{array}\right.$,則f(f(-2))等于( 。
A.1B.2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案