14.在等差數(shù)列{an}中,已知a4+a8=16,則a2+a6+a10=( 。
A.12B.16C.20D.24

分析 由等差數(shù)列通項(xiàng)公式得a6=8,a2+a6+a10=3a6,由此能求出結(jié)果.

解答 解:∵在等差數(shù)列{an}中,a4+a8=16,
∴a4+a8=2a6=16,解得a6=8,
∴a2+a6+a10=3a6=24.
故選:D.

點(diǎn)評(píng) 本題考查等差數(shù)列的三項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),則f(2017.5)=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.拋物線x=-ay2(a>0)的準(zhǔn)線方程為$x=\frac{1}{4a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)a∈R,若函數(shù)y=eax+2x,x∈R有大于零的極值點(diǎn),則( 。
A.a<-2B.a>-2C.a>-$\frac{1}{2}$D.a<-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)x∈Z,A={奇數(shù)},B={偶數(shù)},若命題p:?x∈A,2x∈B,則其否定為( 。
A.?x∈A,2x∉BB.?x∉A,2x∉BC.?x∉A,2x∈BD.?x∈A,2x∉B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知F1,F(xiàn)2分別為雙曲線$C:\frac{x^2}{4}-\frac{y^2}{5}=1$的左、右焦點(diǎn),P為C右支上一點(diǎn),且|PF1|=2|PF2|,則△PF1F2的面積為(  )
A.$\sqrt{15}$B.$\frac{{3\sqrt{15}}}{8}$C.$2\sqrt{15}$D.$3\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列兩組變量具有相關(guān)關(guān)系的是( 。
A.人的體重與學(xué)歷B.圓的半徑與其周長(zhǎng)
C.人的生活水平與購(gòu)買能力D.成年人的財(cái)富與體重

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)=lg\frac{kx-1}{x-1}(k∈R)$.
(1)當(dāng)k=0時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)k>0時(shí),求函數(shù)f(x)的定義域;
(3)若函數(shù)f(x)在區(qū)間[10,+∞)上是單調(diào)增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)集合A={1,2,3},B={1,2,3},分別從集合A和B中隨機(jī)取一個(gè)數(shù)a和b,確定平面上的一個(gè)點(diǎn)P(a,b),記“點(diǎn)P(a,b)落在直線x+y=n上”為事件Cn(2≤n≤6,n∈N),若事件Cn的概率最大,則n的所有可能值為( 。
A.4B.2和6C.3和5D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案