6.在周長為6的△ABO中,∠AOB=60°,點(diǎn)P在邊AB上,PH⊥OA于H(點(diǎn)H在邊OA上),且PH=$\frac{\sqrt{3}}{2}$,OP=$\frac{\sqrt{7}}{2}$.則邊OA的長為2.1.

分析 先求出HC=1,BO,再過O作OQ⊥AB于Q,求出BQ,AQ,利用周長為6,即可得出結(jié)論.

解答 解:∵PH=$\frac{\sqrt{3}}{2}$,OP=$\frac{\sqrt{7}}{2}$,
∴HC=1,
設(shè)AH=x,則AO=x+1,AP=$\sqrt{{x}^{2}+\frac{3}{4}}$,
sinA=$\frac{\frac{\sqrt{3}}{2}}{\sqrt{{x}^{2}+\frac{3}{4}}}$,
由正弦定理,可得BO=$\frac{2(x+1)}{\sqrt{4{x}^{2}+3}}$.
過O作OQ⊥AB于Q,
∴BQ=$\frac{x+1}{\sqrt{4{x}^{2}+3}}$,AQ=$\frac{2x(x+1)}{\sqrt{4{x}^{2}+3}}$,
∵周長為6,
∴$\frac{2(x+1)}{\sqrt{4{x}^{2}+3}}$+$\frac{x+1}{\sqrt{4{x}^{2}+3}}$+$\frac{2x(x+1)}{\sqrt{4{x}^{2}+3}}$+x+1=6
∴(x2+1)(60x-66)=0,
∴x=1.1,
∴AO=2.1,
故答案為:2.1.

點(diǎn)評 本題考查正弦定理,考查三角形周長的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,-\frac{π}{2}<φ<\frac{π}{2})$圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變),然后把所得圖象上的所有點(diǎn)沿x軸向右平移$\frac{π}{3}$個單位,得到函數(shù)y=2sinx的圖象,則f(φ)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)為偶函數(shù),且當(dāng)x<0時,f(x)=x-$\frac{1}{x}$,那么f(1)=( 。
A.0B.-2C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.用二分法求方程2x3+3x-3=0在區(qū)間(0,2)內(nèi)的實(shí)根,取區(qū)間中點(diǎn)為x0=1,那么下一個有根的區(qū)間是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知全集U=R,集合A={x|y=$\sqrt{2x-{x^2}}}}$};集合B={y|y=ex,x∈R},則(∁RA)∩B=( 。
A.{x|x>2}B.{x|0<x≤1}C.{x|1<x≤2}D.{x|x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在空間四邊形ABCD中,E,F(xiàn),G,H分別為AB,BC,CD,DA的中點(diǎn),AB=AD,BC=CD.
(1)求證:AC⊥BD;
(2)求證:四邊形EFGH為矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l1:(m-2)x+(m+2)y+1=0,12:(m2-4)x-my+1-3=0.
(1)若l1∥l2,求:實(shí)數(shù)m的值;
(2)若l1⊥l2,求:實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2x-$\frac{1}{{2}^{x}}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并證明函數(shù)f(x)的單調(diào)性;
(3)對于函數(shù)f(x),當(dāng)x∈(-1,1)時,f(1-m)+f(2-m)≥0,求實(shí)數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.f(α)=$\frac{sin(\frac{π}{2}-α)cos(10π-α)tan(-α+3π)}{tan(π+α)sin(\frac{5π}{2}+α)}$.
(1)化簡f(α);
(2)若α∈(0,$\frac{π}{2}$),且sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,求f(α)的值.

查看答案和解析>>

同步練習(xí)冊答案