分析 先求出HC=1,BO,再過O作OQ⊥AB于Q,求出BQ,AQ,利用周長為6,即可得出結(jié)論.
解答 解:∵PH=$\frac{\sqrt{3}}{2}$,OP=$\frac{\sqrt{7}}{2}$,
∴HC=1,
設(shè)AH=x,則AO=x+1,AP=$\sqrt{{x}^{2}+\frac{3}{4}}$,
sinA=$\frac{\frac{\sqrt{3}}{2}}{\sqrt{{x}^{2}+\frac{3}{4}}}$,
由正弦定理,可得BO=$\frac{2(x+1)}{\sqrt{4{x}^{2}+3}}$.
過O作OQ⊥AB于Q,
∴BQ=$\frac{x+1}{\sqrt{4{x}^{2}+3}}$,AQ=$\frac{2x(x+1)}{\sqrt{4{x}^{2}+3}}$,
∵周長為6,
∴$\frac{2(x+1)}{\sqrt{4{x}^{2}+3}}$+$\frac{x+1}{\sqrt{4{x}^{2}+3}}$+$\frac{2x(x+1)}{\sqrt{4{x}^{2}+3}}$+x+1=6
∴(x2+1)(60x-66)=0,
∴x=1.1,
∴AO=2.1,
故答案為:2.1.
點(diǎn)評 本題考查正弦定理,考查三角形周長的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -2 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x>2} | B. | {x|0<x≤1} | C. | {x|1<x≤2} | D. | {x|x<0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com