如圖,已知拋物線的焦點(diǎn)在拋物線上,點(diǎn)是拋物線上的動(dòng)點(diǎn).

(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過點(diǎn)作拋物線的兩條切線,分別為兩個(gè)切點(diǎn),設(shè)點(diǎn)到直線的距離為,求的最小值.

(1)的方程為,其準(zhǔn)線方程為.(2)

解析試題分析:解:(Ⅰ)的焦點(diǎn)為,                                    …2分
所以,.                                          …4分
的方程為,其準(zhǔn)線方程為.                   …6分
(Ⅱ)設(shè),,
的方程:
所以,即
同理,,.             …8分
的方程:
.ks5u
,得.       …10分
所以直線的方程為.                            …12分
于是
,則(當(dāng)時(shí)取等號(hào)).
所以,的最小值為.                                       …15分
考點(diǎn):拋物線方程
點(diǎn)評(píng):解決的關(guān)鍵是對(duì)于直線與拋物線的位置關(guān)系的運(yùn)用,聯(lián)立方程組,結(jié)合韋達(dá)定理來求解,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,橢圓C以過點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
求橢圓C的方程;
E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,F1F2是離心率為的橢圓C(ab>0)的左、右焦點(diǎn),直線x=-將線段F1F2分成兩段,其長(zhǎng)度之比為1 : 3.設(shè)A,B是橢圓C上的兩個(gè)動(dòng)點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),線段AB的中點(diǎn)M在直線l上.

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,已知點(diǎn)P,曲線C的參數(shù)方程為φ為參數(shù))。以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(1)判斷點(diǎn)P與直線l的位置關(guān)系,說明理由;
(2)設(shè)直線l與直線C的兩個(gè)交點(diǎn)為A、B,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線與拋物線交于兩點(diǎn).
(1)求線段的長(zhǎng);(2)若拋物線的焦點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

圓C的圓心在y軸上,且與兩直線l1;l2均相切.
(I)求圓C的方程;
(II)過拋物線上一點(diǎn)M,作圓C的一條切線ME,切點(diǎn)為E,且的最小值為4,求此拋物線準(zhǔn)線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為
(1)求曲線C的普通方程;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線L的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖,設(shè)點(diǎn)分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且最小值為

(1)求橢圓的方程;
(2)若動(dòng)直線均與橢圓相切,且,試探究在軸上是否存在定點(diǎn),點(diǎn)的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案