【題目】在如圖所示的多面體中, 平面 的中點(diǎn).

(1)求證:

(2)求二面角的余弦值.

【答案】(1)見解析;(2)平面與平面所成二面角的余弦值為.

【解析】試題分析

由題意可證得兩兩垂直,建立空間直角坐標(biāo)系求解.(1)通過證明,可得.(2)由題意可得平面的一個法向量為,又可求得平面的法向量為,故可求得,結(jié)合圖形可得平面與平面所成的二面角為銳角,由此可得所求余弦值.

試題解析

(1)∵平面平面平面

,

,

兩兩垂直,

以點(diǎn)為坐標(biāo)原點(diǎn), 所在直線分別為軸建立如圖所示的空間直角坐標(biāo)系,

,

,

;

(2)由已知,得是平面的一個法向量,

設(shè)平面的法向量為,

,得

,得.

,

由圖形知,平面與平面所成的二面角為銳角,

∴平面與平面所成二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃投資A、B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資量成正比例,其關(guān)系如圖1,B產(chǎn)品的利潤與投資量的算術(shù)平方根成正比例,其關(guān)系如圖2(注:利潤與投資量的單位:萬元).

(1)分別將A、B兩產(chǎn)品的利潤表示為投資量的函數(shù)關(guān)系式;

(2)該公司已有10萬元資金,并全部投入A、B兩種產(chǎn)品中,問:怎樣分配這10萬元投資,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)為奇函數(shù),且在上單調(diào)遞增,若,則不等式的解集為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex+sinx,g(x)=ax,F(xiàn)(x)=f(x)﹣g(x).
(1)若x=0是F(x)的極值點(diǎn),求a的值;
(2)當(dāng) a=1時,設(shè)P(x1 , f(x1)),Q(x2 , g(x2))(x1>0,x2>0),且PQ∥x軸,求P、Q兩點(diǎn)間的最短距離;
(3)若x≥0時,函數(shù)y=F(x)的圖象恒在y=F(﹣x)的圖象上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某體校為了備戰(zhàn)明年四月份省劃艇單人雙槳比賽,對本校甲、乙兩名劃艇運(yùn)動員在相同條件下進(jìn)行了6次測試,測得他們劃艇最大速度單位:數(shù)據(jù)如下:

甲:27,38,30,37,35,31;

乙:33,29,38,34,28,36.

試用莖葉圖表示甲、乙兩名運(yùn)動員測試的成績;

根據(jù)測試的成績,你認(rèn)為派哪名運(yùn)動員參加明年四月份的省劃艇單人雙槳比賽比較合適?并說明你的理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線C: =1(a>0,b>0)兩條漸近線l1 , l2與拋物線y2=﹣4x的準(zhǔn)線1圍成區(qū)域Ω,對于區(qū)域Ω(包含邊界),對于區(qū)域Ω內(nèi)任意一點(diǎn)(x,y),若 的最大值小于0,則雙曲線C的離心率e的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

求函數(shù)的單調(diào)遞增區(qū)間

證明:當(dāng),

(Ⅲ)確定實數(shù)的值,使得存在當(dāng),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率是,過點(diǎn)的動直線與橢圓相交于兩點(diǎn)當(dāng)直線軸平行時,直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程

(Ⅱ)在軸上是否存在異于點(diǎn)的定點(diǎn),使得直線變化時總有?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), ,若,使得直線的斜率為0,則的最小值為( )

A. B. C. D. 2

查看答案和解析>>

同步練習(xí)冊答案