【題目】在如圖所示的多面體中, 平面 是的中點(diǎn).
(1)求證: ;
(2)求二面角的余弦值.
【答案】(1)見解析;(2)平面與平面所成二面角的余弦值為.
【解析】試題分析:
由題意可證得兩兩垂直,建立空間直角坐標(biāo)系求解.(1)通過證明,可得.(2)由題意可得平面的一個法向量為,又可求得平面的法向量為,故可求得,結(jié)合圖形可得平面與平面所成的二面角為銳角,由此可得所求余弦值.
試題解析:
(1)∵平面平面平面,
∴,
又,
∴兩兩垂直,
以點(diǎn)為坐標(biāo)原點(diǎn), 所在直線分別為軸建立如圖所示的空間直角坐標(biāo)系,
則,
∴,
∵,
∴;
(2)由已知,得是平面的一個法向量,
設(shè)平面的法向量為,
∵,
由,得,
令,得.
∴,
由圖形知,平面與平面所成的二面角為銳角,
∴平面與平面所成二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃投資A、B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資量成正比例,其關(guān)系如圖1,B產(chǎn)品的利潤與投資量的算術(shù)平方根成正比例,其關(guān)系如圖2(注:利潤與投資量的單位:萬元).
(1)分別將A、B兩產(chǎn)品的利潤表示為投資量的函數(shù)關(guān)系式;
(2)該公司已有10萬元資金,并全部投入A、B兩種產(chǎn)品中,問:怎樣分配這10萬元投資,才能使公司獲得最大利潤?其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex+sinx,g(x)=ax,F(xiàn)(x)=f(x)﹣g(x).
(1)若x=0是F(x)的極值點(diǎn),求a的值;
(2)當(dāng) a=1時,設(shè)P(x1 , f(x1)),Q(x2 , g(x2))(x1>0,x2>0),且PQ∥x軸,求P、Q兩點(diǎn)間的最短距離;
(3)若x≥0時,函數(shù)y=F(x)的圖象恒在y=F(﹣x)的圖象上方,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某體校為了備戰(zhàn)明年四月份省劃艇單人雙槳比賽,對本校甲、乙兩名劃艇運(yùn)動員在相同條件下進(jìn)行了6次測試,測得他們劃艇最大速度單位:數(shù)據(jù)如下:
甲:27,38,30,37,35,31;
乙:33,29,38,34,28,36.
試用莖葉圖表示甲、乙兩名運(yùn)動員測試的成績;
根據(jù)測試的成績,你認(rèn)為派哪名運(yùn)動員參加明年四月份的省劃艇單人雙槳比賽比較合適?并說明你的理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線C: ﹣ =1(a>0,b>0)兩條漸近線l1 , l2與拋物線y2=﹣4x的準(zhǔn)線1圍成區(qū)域Ω,對于區(qū)域Ω(包含邊界),對于區(qū)域Ω內(nèi)任意一點(diǎn)(x,y),若 的最大值小于0,則雙曲線C的離心率e的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)證明:當(dāng)時, ;
(Ⅲ)確定實數(shù)的值,使得存在,當(dāng)時,恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是,過點(diǎn)的動直線與橢圓相交于兩點(diǎn),當(dāng)直線與軸平行時,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點(diǎn)的定點(diǎn),使得直線變化時,總有?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com